首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Multidrug resistance (MDR) resulting from the overexpression of drug transporters such as P‐glycoprotein (Pgp) increases the efflux of drugs and thereby limits the effectiveness of chemotherapy. To address this issue, this work develops an injectable hollow microsphere (HM) system that carries the anticancer agent irinotecan (CPT‐11) and a NO‐releasing donor (NONOate). Upon injection of this system into acidic tumor tissue, environmental protons infiltrate the shell of the HMs and react with their encapsulated NONOate to form NO bubbles that trigger localized drug release and serve as a Pgp‐mediated MDR reversal agent. The site‐specific drug release and the NO‐reduced Pgp‐mediated transport can cause the intracellular accumulation of the drug at a concentration that exceeds the cell‐killing threshold, eventually inducing its antitumor activity. These results reveal that this pH‐responsive HM carrier system provides a potentially effective method for treating cancers that develop MDR.  相似文献   

2.
BACKGROUND: Multidrug resistance (MDR) mediated by expression of MDR1 P-glycoprotein (Pgp) represents one of the best characterized barriers to chemotherapy in cancer patients. Positron emission tomography (PET) agents for analysis of Pgp-mediated drug transport activity in vivo would enable noninvasive assessment of chemotherapeutic regimens and MDR gene therapy. RESULTS: Candidate Schiff-base phenolic gallium(III) complexes were synthesized from their heptadentate precursors and gallium(III)acetylacetonate. Crystal structures demonstrated a hexacoordinated central gallium with overall trans-pseudo-octahedral geometry. Radiolabeled (67)Ga-complexes were obtained in high purity and screened in drug-sensitive (Pgp(-)) and MDR (Pgp(+)) tumor cells. Compared with control, lead compound 6. demonstrated antagonist-reversible 55-fold lower accumulation in Pgp-expressing MDR cells. Futhermore, compared with wild-type control, quantitative pharmacokinetic analysis showed markedly increased penetration and retention of 6. in brain and liver tissues of mdr1a/b((-/-)) gene disrupted mice, correctly mapping Pgp-mediated transport activity at the capillary blood-brain barrier and hepatocellular biliary cannalicular surface in vivo. CONCLUSIONS: These results indicate that gallium(III) complex 6. is recognized by MDR1 Pgp as an avid transport substrate, thereby providing a useful scaffold to generate (68)Ga radiopharmaceuticals for molecular imaging of Pgp transport activity in tumors and tissues in vivo using PET.  相似文献   

3.
Multidrug resistance (MDR) is the phenomenon in which cultured tumor cells, selected for resistance to one chemotherapeutic agent, simultaneously acquire resistance to several apparently unrelated drugs. The MDR phenotype is multifactorial. The best-studied mechanism involves the expression of a membrane protein that acts as an energy-dependent efflux pump, known as P-glycoprotein (Pgp), capable of extruding toxic materials from the cell. In this work, resistance to UVA radiation, but not to UVC nor UVB, was observed in an MDR leukemia cell line. This cell line overexpresses Pgp. To study the role of Pgp in the resistance to UVA radiation, two MDR modulators or reversing agents (verapamil and cyclosporin A) capable of blocking Pgp activity were used. Cell viability was assessed and the techniques of flow cytometry and fluorescence microscopy were employed to measure the extrusion of rhodamine 123 by the efflux pump. The results show that MDR modulators did not modify the resistance to UVA radiation. Furthermore, although cell viability was not significantly altered, Pgp function was impaired after UVA treatment, suggesting that this glycoprotein may be a physical target for oxidative damage, and that other factors may be responsible for the UVA resistance. In agreement with this, it was found that the resistant cell line presented a higher catalase activity than the parental (non-MDR) cell line.  相似文献   

4.
We prepared the PLGA‐loaded anti‐cancer drug and coated it with quantum dots to make it a dual‐function nanoparticles, and analyzed its potential use in cellular imaging and curing cancers. Two cancer cell lines, paclitaxel‐sensitive KB and paclitaxel‐resistant KB paclitaxel‐50 cervical carcinoma cells, were the relativistic models for analysis of the cytotoxicity of free paclitaxel and paclitaxel‐loaded PLGA conjugated with quantum‐dot nanoparticles. The paclitaxel‐loaded PLGA conjugated with quantum dots nanoparticles were significantly more cytotoxic than the free paclitaxel drug in paclitaxel‐resistant KB paclitaxel‐50 cells. This might have been because the cancer cells developed multi‐drug resistance (MDR), which hampered the action of free paclitaxel by pumping its molecules to extracellular areas. Addition of verapamil, a P‐glycoprotein inhibitor, reversed the MDR mechanism and significantly reduced KB paclitaxel‐50 cell viability. As a result, KB paclitaxel‐50 was highly associated with MDR on the cell membrane. The cytotoxicity results indicated that PLGA nanoparticles served as drug carriers and protected the drugs from MDR‐accelerated efflux. Combined quantum dots with PLGA nanoparticles allowed additional functionality for cellular imaging.  相似文献   

5.
Transcellular diffusion across the absorptive epithelial cells (enterocytes) of the small intestine is the main route of absorption for most orally administered drugs. The process by which lipophilic compounds transverse the aqueous environment of the cytoplasm, however, remains poorly defined. In the present study, we have identified a structurally diverse group of lipophilic drugs that display low micromolar binding affinities for a cytosolic lipid-binding protein - intestinal fatty acid-binding protein (I-FABP). Binding to I-FABP significantly enhanced the transport of lipophilic drug molecules across a model membrane, and the degree of transport enhancement was related to both drug lipophilicity and I-FABP binding affinity. These data suggest that intracellular lipid-binding proteins such as I-FABP may enhance the membrane transport of lipophilic xenobiotics and facilitate drug access to the enterocyte cytoplasm and cytoplasmic organelles.  相似文献   

6.
Isobavachalcone (IBC) is an active substance from the medicinal plant Psoralea corylifolia. This prenylated chalcone was reported to possess antioxidative, anti-inflammatory, antibacterial, and anticancer activities. Multidrug resistance (MDR) associated with the over-expression of the transporters of vast substrate specificity such as ABCB1 (P-glycoprotein) belongs to the main causes of cancer chemotherapy failure. The cytotoxic, MDR reversing, and ABCB1-inhibiting potency of isobavachalcone was studied in two cellular models: human colorectal adenocarcinoma HT29 cell line and its resistant counterpart HT29/Dx in which doxorubicin resistance was induced by prolonged drug treatment, and the variant of MDCK cells transfected with the human gene encoding ABCB1. Because MDR modulators are frequently membrane-active substances, the interaction of isobavachalcone with model phosphatidylcholine bilayers was studied by means of differential scanning calorimetry. Molecular modeling was employed to characterize the process of membrane permeation by isobavachalcone. IBC interacted with ABCB1 transporter, being a substrate and/or competitive inhibitor of ABCB1. Moreover, IBC intercalated into model membranes, significantly affecting the parameters of their main phospholipid phase transition. It was concluded that isobavachalcone interfered both with the lipid phase of cellular membrane and with ABCB1 transporter, and for this reason, its activity in MDR cancer cells was presumptively beneficial.  相似文献   

7.
Cell-based high content screening using an integrated microfluidic device   总被引:3,自引:0,他引:3  
Ye N  Qin J  Shi W  Liu X  Lin B 《Lab on a chip》2007,7(12):1696-1704
High content screening (HCS) has quickly established itself as a core technique in the early stage of drug discovery for secondary compound screening. It allows several independent cellular parameters to be measured in a single cell or populations of cells in a single assay. In this work, we describe high content screening for the multiparametric measurement of cellular responses in human liver carcinoma (HepG2) cells using an integrated microfluidic device. This device consists of multiple drug gradient generators and parallel cell culture chambers, in which the processes of liquid dilution and diffusion, micro-scale cell culture, cell stimulation and cell labeling can be integrated into a single device. The simple assay provides multiparametric measurements of plasma membrane permeability, nuclear size, mitochondrial transmembrane potential and intracellular redox states in anti-cancer drug-induced apoptosis of HepG2 cells. The established platform is able to rapidly extract the maximum of information from tumor cells in response to several drugs varying in concentration, with minimal sample and less time, which is very useful for basic biomedical research and cancer treatment.  相似文献   

8.
Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.  相似文献   

9.
PORPHYRIN PHOTOSENSITIZATION OF MULTI-DRUG RESISTANT CELL TYPES   总被引:1,自引:0,他引:1  
The P388 murine leukemia and P388/ADR, a subline expressing the multi-drug resistance (MDR) phenotype, were examined with regard to the role of MDR as a determinant of responsiveness to photodynamic therapy in vitro. Mesoporphyrin was used as a model substrate. We found no differences in porphyrin accumulation nor transport alterations associated with exposure of P388/ADR cells to the verapamil analog DMDP. There was a significant correlation between photodamage to mitochondria vs loss of cell viability in both cell lines, and LD50 sensitizer levels were not significantly different in P388 vs P388/ADR. P388/ADR cells were partly resistant to porphyrin-catalyzed photodamage to amino acid transport, but this result was not associated with differences in sensitizer localization, as indicated by fluorescence studies. Moreover, photodamage to membrane transport was not associated with loss of viability. These studies suggest that cells which express the MDR phenotype are unlikely to be cross-resistant to photodynamic therapy.  相似文献   

10.
Failure of chemotherapy to the malignant tumor is usually induced by multidrug resistance (MDR). The development of anti-MDR agents for efficient drug delivery is of great importance in cancer therapy. Recent reports have demonstrated that some anticancer drugs could be readily self-assembled on some biocompatible nanomaterials covalently or non-covalently, which could effectively afford the sustained drug delivery for the target cancer cells and reduce the relevant toxicity towards normal cells and tissues. Thus these biocompatible nanomaterials may play an important role in the relevant biological and biomedical system. In this paper, we have explored the cytotoxic effect of anticancer drug daunorubicin on leukemia cancer cells in the absence and presence of different sized ZnO nanoparticles via fluorescence microscopy, UV-Vis absorption spectroscopy, electrochemical analysis as well as MTT assay. Meanwhile, the cytotoxicity suppression of daunorubicin together with different sized ZnO nanoparticles in the absence and presence of UV irradiation on leukemia cancer cells were also investigated using MTT assay. The results indicate that the combination of the different sized ZnO nanoparticles and daunorubicin under UV irradiation could have synergistic cytotoxic effect on leukemia cancer cells, indicating the great potential of ZnO nanoparticles in relevant clinical and biomedical applications.  相似文献   

11.
Meta-tetra(hydroxyphenyl)chlorin (mTHPC) is in clinical trials for the photodynamic therapy (PDT) of localized-stage cancer. The PDT susceptibility of cells expressing multidrug resistance (MDR) phenotype is an attractive possibility to overcome the resistance to cytotoxic drugs observed during cancer chemotherapy. The accumulation, photocytotoxicity and intracellular localization of mTHPC were examined using the doxorubicin selected MCF-7/DXR human breast cancer cells, expressing P-glycoprotein (P-gp), and the wild-type parental cell line, MCF-7. No significant difference in mTHPC accumulation was observed between the two cell lines up to 3 h contact. The photodynamic activity of mTHPC, measured 24 h after irradiation with red laser light (lambda=650 nm), was significantly greater in MCF-7/DXR as compared to MCF-7 cells. A light dose of 2.5 J cm(-2) inducing 50% of cytotoxicity in MCF-7, resulted in 85% cytotoxicity in MCF-7/DXR. The presence of P-gp inhibitors SDZ-PSC-833 and cyclosporin A did not modify the mTHPC-induced cytotoxicity. The difference in intracellular mTHPC distribution pattern between two cell lines may contribute to different photocytotoxicity. Our results indicate that mTHPC mediated PDT could be useful in killing cells expressing MDR phenotype.  相似文献   

12.
Platinum-based drugs play a crucial role in the fight against cancer. Oxaliplatin, which is used in the treatment of colorectal carcinoma, was the last platinum-based agent to be approved worldwide. However, the efficiency of the therapy is limited for example by a low accumulation of the drug in cancer cells. Cell-penetrating peptides (CPPs) are known to ease the cellular membrane transport and are used as vectors for low-molecular-weight drugs and drug carriers; of them, TAT peptides are the best-studied group. In this work, a TAT-peptide fragment (YGRKKRRQRRR) was for the first time conjugated to a platinum(IV) analog of oxaliplatin as a vehicle for membrane penetration. Solid-phase peptide synthesis and subsequent coupling with the platinum complex afforded mono- and difunctionalized conjugates, which were separated by preparative HPLC and characterized by analytical HPLC, ESI-MS, and (1)H NMR spectroscopy. Both conjugates are active in the low micromolar range in CH1 and SW480 human cancer cells, requiring much lower concentrations than the untargeted analogs for equal effects.  相似文献   

13.
Chen S  Tan Z  Li N  Wang R  He L  Shi Y  Jiang L  Li P  Zhu X 《Macromolecular bioscience》2011,11(6):828-838
Efficient intracellular translocation is achieved using an easily prepared hyperbranched polysulfonamine that remains negatively charged at physiological pH. Investigations on the cellular uptake mechanism and the subcellular distribution of PSA are reported. The in vitro cytotoxicity of PSA is found to be low. Using doxorubicin as a model drug, a PSA/drug complex is prepared by electrostatic interaction with a high drug payload that exhibits a controlled release in response to pH. Efficient intracellular drug delivery, strong growth inhibition of tumor cells, and low cytotoxicity to normal cells are observed. The results suggest a possible way to utilize anionic polymers for intracellular delivery of therapeutic moieties or drugs.  相似文献   

14.
15.
The phototoxic effect of meso-tetra-hydroxyphenyl-chlorin (mTHPC)-mediated photodynamic therapy (PDT) on human microvascular endothelial cells (hMVEC) was compared with that on human fibroblasts (BCT-27) and two human tumor cell lines (HMESO-1 and HNXOE). To examine the relationship between intrinsic phototoxicity and intracellular mTHPC content, we expressed cell survival as a function of cellular fluorescence. On the basis of total cell fluorescence, HNXOE tumor cells were the most sensitive and BCT-27 fibroblasts the most resistant, but these differences disappeared after correcting for cell volume. Endothelial cells were not intrinsically more sensitive to mTHPC-PDT than tumor cells or fibroblasts. Uptake of mTHPC in hMVEC increased linearly to at least 48 h, whereas drug uptake in the other cell lines reached a maximum by 24 h. No difference in drug uptake was seen between the cell lines during the first 24 h, but by 48 h hMVEC had a 1.8- to 2.8-fold higher uptake than other cell lines. Endothelial cells showed a rapid apoptotic response after mTHPC-mediated PDT, whereas similar protocols gave a delayed apoptotic or necrotic like response in HNXOE. We conclude that endothelial cells are not intrinsically more sensitive than other cell types to mTHPC-mediated PDT but that continued drug uptake beyond 24 h may lead to higher intracellular drug levels and increased photosensitivity under certain conditions.  相似文献   

16.
Li X  Chen Y  Li PC 《Lab on a chip》2011,11(7):1378-1384
Due to the cellular heterogeneity in multidrug resistance (MDR) cell populations, positive drug effects on the modulation of MDR can be obscured in conventional methods, especially when only a small number of cells are available. To address cellular variations among different MDR cells, we report a new microfluidic approach to study drug effect on MDR modulation, by investigating drug accumulation of daunorubicin in MDR leukemia cells. We have demonstrated that the new approach of same-single-cell analysis by accumulation (denoted as SASCA-A) is not only superior to different-single-cell analysis, but also has key advantages over our previous approach of same-single-cell analysis. First, SASCA-A is much simpler as it does not require multiple cycles of drug uptake and drug efflux. Second, it is faster, only taking about one fourth of the time used in the previous approach. Third, it provides a more 'identical' and reliable control because it compares the time points just before MDR modulator tests. To help understand the dynamics of drug accumulation in MDR cells, we also developed a mathematical model to describe the kinetics of drug accumulation conducted in individual cells. The SASCA-A method will benefit drug resistance research in minor cell subpopulations (e.g., cancer "stem" cells) because this method requires only a small number of cells in identifying the MDR reversal effect.  相似文献   

17.
自噬是真核细胞降解蛋白质的重要途径之一, 在细胞的更新代谢中起重要作用. 肿瘤细胞借助高水平的细胞自噬能够阻断细胞凋亡途径, 降低化疗药物的抗肿瘤效果. 本文通过设计编码有核酸适配体序列(Aptamer)和DNA酶序列(DNAzyme)的多功能DNA纳米花, 利用DNA序列可负载化疗药物阿霉素(Dox)的特性, 实现了对肿瘤细胞特异靶向的药物递送, 并高效沉默肿瘤细胞的自噬相关基因ATG5, 达到增敏抗肿瘤化疗的效果. 通过RT-PCR实验验证合成的DNA纳米花可以有效剪切肿瘤细胞中自噬相关基因ATG5的mRNA; 并通过DNA纳米花的细胞毒性和细胞凋亡实验研究了其对肿瘤细胞系MCF-7的靶向治疗作用, 结果显示该多功能DNA纳米花在增敏抗肿瘤化疗方面具有明显优势.  相似文献   

18.
Besides liquid chromatographic (LC)/UV methods adapted to therapeutic drug monitoring, there is still a need for more powerful techniques that can be used for pharmacological research and clinical purposes. We developed an LC method coupled with tandem mass spectrometry (MS/MS) to separate, detect and quantify with high sensitivity the nucleoside analogues used in multitherapies (zidovudine, stavudine, zalcitabine, didanosine, lamivudine and abacavir) in plasma and in the intracellular medium. We worked on two essential issues: (i) the need to use two ionization modes in order to achieve the best sensitivity, which leads to the optimization of the chromatographic separation of drugs detected in the positive ionization mode and drugs detected in the negative ionization mode, and (ii) the need to optimize the extraction step in order to enhance sample recovery. The peripheral blood mononuclear cells were lysed in Tris buffer-MeOH. A clean-up procedure was performed by solid-phase extraction only for plasma samples. The LC separation was carried out on a Zorbax Stable Bond C(18) column followed by MS/MS analysis after electrospray ionization in either the negative or positive mode. The positive ionization mode was applied at the beginning of the run to detect zalcitabine and lamivudine, then the ionization mode was changed to negative for the detection of didanosine, stavudine, internal standard and zidovudine. The calibration range for all the analytes was 0.5-200 ng ml(-1). The recoveries were between 64 and 90%, with coefficients of variation (CVs) lower than 15%. The inaccuracy (bias) was +/-15% with CVs always lower than 12%. The analytes were stable at room temperature and in the extraction solvent for at least 24 h, after storage at -80 degrees C for 3 months, after three freeze-thaw cycles and in the injection solvent after 48 h at 4 degrees C. Together with the measurement of intracellular triphosphorylated metabolites thanks to the powerful plasma and intracellular assay method for intact drugs, it is possible to describe the behaviour of nucleoside analogues against HIV through plasma pharmacokinetics, cell membrane diffusion including drug transport involvement, and also the intracellular metabolism.  相似文献   

19.
《中国化学快报》2023,34(6):107828
Local delivery of nanomedicines holds therapeutic promise for colorectal cancer (CRC). However, it presents tremendous challenges due to the existence of multiple physiological barriers, especially intracellular obstacles, including intracellular trafficking, subcellular accumulation, and drug release. Herein, we report a multifunctional nanoparticle (CMSNR) by wrapping the mesoporous silica nanorod with cell membrane derived from CRC cells for improved chemotherapy. Compared with their naked counterparts, the cell membrane endowed CMSNR with homotypic targeting and improved cellular uptake capacities. Due to the rod-like shape, CMSNR achieved superior colorectal mucus permeability, enhanced tumor accumulation, and boosted cellular uptake than their spherical counterparts. Moreover, the internalized CMSNR underwent robust intracellular trafficking and gained augmented motility toward the nucleus, leading to efficient perinuclear accumulation and a subsequent 5.6-fold higher nuclear accumulation of loaded drug than that of nanospheres. In the orthotopic colorectal tumor-bearing nude mice, rectally administrated mefuparib hydrochloride (MPH)-loaded CMSNR traversed the colorectal mucus, penetrated the tumor tissue, and successfully aggregated in the perinuclear region of cancer cells, thus exhibiting significantly improved antitumor outcomes. Our findings highlight the shape-based design of cell membrane-coated nanoparticles that can address sequential drug delivery barriers has a promising future in cancer nanomedicine.  相似文献   

20.
Liposomes externally modified with the nineteen residues gH625 peptide, previously identified as a membrane‐perturbing domain in the gH glycoprotein of Herpes simplex virus type I, have been prepared in order to improve the intracellular uptake of an encapsulated drug. An easy and versatile synthetic strategy, based on click chemistry, has been used to bind, in a controlled way, several copies of the hydrophobic gH625 peptide on the external surface of 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPG)‐based liposomes. Electron paramagnetic resonance studies, on liposomes derivatized with gH625 peptides, which are modified with the 2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐4‐amino‐4‐carboxylic acid (TOAC) spin label in several peptide positions, confirm the positioning of the coupled peptides on the liposome external surface, whereas dynamic light scattering measurements indicate an increase of the diameter of the liposomes of approximately 30 % after peptide introduction. Liposomes have been loaded with the cytotoxic drug doxorubicin and their ability to penetrate inside cells has been evaluated by confocal microscopy experiments. Results suggest that liposomes functionalized with gH625 may act as promising intracellular targeting carriers for efficient delivery of drugs, such as chemotherapeutic agents, into tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号