首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Nanoparticles of Co1−xZnxFe2O4 with stoichiometric proportion (x) varying from 0.0 to 0.6 were prepared by the chemical co-precipitation method. The samples were sintered at 600 °C for 2 h and were characterized by X-ray diffraction (XRD), low field AC magnetic susceptibility, DC electrical resistivity and dielectric constant measurements. From the analysis of XRD patterns, the nanocrystalline ferrite had been obtained at pH=12.5–13 and reaction time of 45 min. The particle size was calculated from the most intense peak (3 1 1) using the Scherrer formula. The size of precipitated particles lies within the range 12–16 nm, obtained at reaction temperature of 70 °C. The Curie temperature was obtained from AC magnetic susceptibility measurements in the range 77–850 K. It is observed that Curie temperature decreases with the increase of Zn concentration. DC electrical resistivity measurements were carried out by two-probe method from 370 to 580 K. Temperature-dependent DC electrical resistivity decreases with increase in temperature ensuring the semiconductor nature of the samples. DC electrical resistivity results are discussed in terms of polaron hopping model. Activation energy calculated from the DC electrical resistivity versus temperature for all the samples ranges from 0.658 to 0.849 eV. The drift mobility increases by increasing temperature due to decrease in DC electrical resisitivity. The dielectric constants are studied as a function of frequency in the range 100 Hz–1 MHz at room temperature. The dielectric constant decreases with increasing frequency for all the samples and follow the Maxwell–Wagner's interfacial polarization.  相似文献   

2.
Effect of annealing on the soft magnetic properties of Fe73.5Si13.5B9Nb3Au1 amorphous ribbon has been investigated by means of structure examination, magnetoimpedance ratio (MIR) and incremental permeability ratio (PR) spectra measured in the frequency range of 1–10 MHz at a fixed current of 10 mA X-ray diffraction analysis showed that the as-cast sample was amorphous and it became nanocrystalline under a proper heat treatment. When annealing amorphous alloy at 530 °C for 30, 60, 90 min, soft magnetic properties have been improved drastically. Among the samples investigated, the sample annealed at 530 °C for 90 min showed the softest magnetic behavior. The MIR and PR curves revealed the desirable changes in anisotropy field depending upon annealing.  相似文献   

3.
Crystals of strontium malonate (SrC3H2O4) were grown in silica gel by the single diffusion technique. The thermo gravimetric (TG), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) studies were carried out to investigate the thermal stability of the crystal. The dielectric behavior of the title compound crystal was investigated by measuring the dielectric parameters - dielectric constant, dielectric loss and AC conductivity as a function of four frequencies −1 kHz, 10 kHz, 100 kHz and 1 MHz at temperatures ranging from 50 to 170 °C. Results indicate that the title compound is thermally stable up to about 409 °C and is a promising low εr-value dielectric material. The magnetic behavior of the crystal was also explored using a vibrating sample magnetometer.  相似文献   

4.
BaFe12O19 powders with nanocrystalline size were prepared by sol–gel techniques. Nitric, hydrochloric, acetic and stearic acid were used to improve the magnetic properties. Amorphous gels were formed with Fe/Ba molar ratio of 10.5. Then powders were obtained by subsequent heat treatment at 800–1000 °C for 1 h. Barium ferrite powder was also synthesized by solid state reaction at 1210 °C. X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM) experiments were conducted to evaluate structural properties of the samples. The value of the effective magnetic susceptibility was measured. The results show that the magnetoplumbite structure was formed in all of the powders. The TEM observation showed that the minimum particle size (20 nm) was produced with the stearic acid catalyst. The highest value of the effective magnetic susceptibility was achieved also using stearic acid.  相似文献   

5.
Co-Nd strontium hexaferrite nanoparticles synthesized by the self-combustion method were treated in a hydrogen flow at different temperatures and times. The samples were characterized structurally by scanning electron microscopy and X-ray diffraction and magnetically with a vibrating sample magnetometer. Phase identification showed decomposition of the hexaferrite structure into Fe3O4 and different strontium mixed oxides. The sample treated at 500 °C for 30 minutes shows good magnetic properties due to the formation of a magnetite/hexaferrite composite. In this case magnetization is very close to the original sample while the coercivity slightly diminishes. The hexagonal phase is almost completely transformed into different oxides at a reducing temperature of 500 °C for 120 minutes. The obtained results are analyzed in terms of the phase composition and of the magnetic susceptibility of the studied samples.  相似文献   

6.
The domain structure of a magnetostrictive Fe40Ni38Mo4B18 amorphous ribbon has been studied using magnetic force microscopy (MFM) at room temperature. First, the evolution of the magnetic domain patterns as a function of the annealing temperature has been investigated. In samples heat treated at 250 and 450 °C for 1 h, a transformation from 90° to 180° domain wall has been clearly observed, while the sample heat treated at 700 °C for 1 h showed a magnetic phase fixed by the crystalline anisotropy. Additionally, the evolution of the magnetic domain structure by applying a DC current was recorded by the MFM technique. For current annealed samples at 1 A for 1, 30 and 60 min, a transformation between different domain patterns has been observed. Finally, in samples treated by the current annealing method under simultaneous stress, an increase of the annealing time gives rise to a different magnetic structure arising from the development of transverse magnetic anisotropy.  相似文献   

7.
Self-heating from magnetic nanoparticles under AC magnetic field can be used either for hyperthermia or to trigger the release of an anti-cancer drug, using thermo-responsive polymers. The heat generated by applying an AC magnetic field depends on the properties of magnetic nanoparticles (composition, size, crystal structure) as well as the frequency and amplitude of the magnetic field. Before these systems can be efficiently applied for in vitro or in vivo studies, a thorough analysis of the magnetically induced heating is required. In this study, CoFe2O4 nanoparticles were synthesized, dispersed in water, and investigated as heating agents for magnetic thermo-drug delivery and hyperthermia. The temperature profiles and infrared (IR) camera images of heat generation of CoFe2O4 nanoparticles under various AC magnetic fields of 127–700 Oe at 195, 231, and 266 kHz were measured using an IR thermacam, excluding the external AC magnetic field interruption. The CoFe2O4 nanoparticles were successfully dispersed in water using an 11-mercaptoundecanoic acid ligand exchange method to exchange the solvent used for synthesis of hexane for water. During the heating experiments, each of CoFe2O4 nanoparticle solutions reached a steady state where the temperature rose between 0.1 and 42.9 °C above ambient conditions when a magnetic field of 127–634 Oe was applied at 231 or 266 kHz. The heat generation was found to be dependent on the intensity of AC magnetic field and applied frequency. Therefore, the desired heating for magnetically triggered drug delivery or hyperthermia could be achieved in water-dispersed CoFe2O4 nanoparticles by adjusting the AC magnetic field and frequency.  相似文献   

8.
This paper studies the relationship between dielectric permittivity and mechanisms of thermal degradation of polyimide (PI) film in air and saline exposure. The real permittivity and loss factor of dried PI were measured at temperatures from −140 to 180 °C and frequencies from 1 Hz to 1 MHz. Two peaks in the temperature-dependent loss factor revealed the occurrence of β- and γ-relaxations in PI. Following thermal degradation at 475 °C for 3 h, the real permittivity of PI was observed to increase by 14% because of the formation of free radicals. The intensity of β-relaxation was also greatly increased after thermal degradation due to scission of chemical bonding in imide groups. Activation energy obtained from the Arrhenius law for γ-relaxation did not change after thermal degradation. For samples exposed to either distilled water or salt water, the variation in salinity did not significantly influence the dielectric permittivity.  相似文献   

9.
Nanosized MgFe2O4-based ferrite powder having heat generation ability in an AC magnetic field was prepared by bead milling and studied for thermal coagulation therapy applications. The crystal size and the particle size significantly decreased by bead milling. The heat generation ability in an AC magnetic field improved with the milling time, i.e. a decrease in crystal size. However, the heat generation ability decreased for excessively milled samples with crystal sizes of less than 5.5 nm. The highest heat ability (ΔT=34 °C) in the AC magnetic field (370 kHz, 1.77 kA/m) was obtained for fine MgFe2O4 powder having a ca. 6 nm crystal size (the samples were milled for 6-8 h using 0.1 mm ? beads). The heat generation of the samples was closely related to hysteresis loss, a B-H magnetic property. The reason for the high heat generation properties of the samples milled for 6-8 h using 0.1 mm ? beads was ascribed to the increase in hysteresis loss by the formation of a single domain. Moreover, the improvement in heating ability was obtained by calcination of the bead-milled sample at low temperature. In this case, the maximum heat generation (ΔT=41 °C) ability was obtained for a ca. 11 nm crystal size sample was prepared by crystal growth during the sample calcination. On the other hand, the ΔT value for Mg0.5Ca0.5Fe2O4 was synthesized using a reverse precipitation method decreased by bead milling.  相似文献   

10.
The nanocrystalline MgCuZn ferrites with particle size (∼30 nm) have been synthesized by microwave-hydrothermal (M-H) method at 160 °C/45 min. The powders were densified at 750-900 °C/30 min using microwave sintering method. The sintered samples were characterized using X-ray diffraction and scanning electron microscope. The grain sizes of the sintered samples are in the range of 60-80 nm. The ultrasonic velocities have been measured on MgCuZn ferrites using the pulse transmission method at 1 MHz. The ultrasonic velocity is found to decrease with an increase of temperature. A small anomaly is observed around the Curie temperature, 520 K. The anomaly observed in the thermal variation of longitudinal velocity and attenuation is explained with the help of magneto-crystalline anisotropy constant.  相似文献   

11.
This paper investigates the effect of warm compaction on the magnetic and electrical properties of Fe-based soft magnetic composites at operating frequencies between 0.1 and 10 kHz. The magnetic and electrical properties of samples were measured by an LCR meter and morphology of the samples was characterized by scanning electron microscopy. It was shown that the compacted sample prepared at 800 MPa and 550 °C had the lowest magnetic loss and electrical resistivity, and highest magnetic induction and effective permeability in comparison with other samples compacted at 800 MPa and room temperature, 150, 250, 350 and 450 °C.  相似文献   

12.
(Ni0.25Cu0.20Zn0.55)LaxFe2−xO4 ferrite with x=0.00, 0.025, 0.050 and 0.075 compositions were synthesized through nitrate–citrate auto-combustion method. Crystalline spinel ferrite phase with about 16–19 nm crystallite size was present in the as-burnt ferrite powder. These powders were calcined, compacted and sintered at 950 °C for 4 h. Initial permeability, magnetic loss and AC resistivity of different compositions were measured in the frequency range from 10 Hz to 10 MHz. Saturation magnetization and hysteresis parameters were measured at room temperature with a maximum magnetic field of 10 kOe. Permeability and AC resistivity were found to increase and magnetic loss decreased with La substitution for Fe, up to x=0.025. Saturation magnetization and coercive field also increases up to that limit. The electromagnetic properties were found best in the ferrite composition of x=0.025, which would be better for more miniaturized multi layer chip inductor.  相似文献   

13.
The magnetic properties of 1.5 at% Fe-doped NiO bulk samples were investigated. The samples were prepared by sintering the corresponding precursor in air at temperatures between 400 and 800 °C for 6 h. The synthesis was by a chemical co-precipitation and post-thermal decomposition method. In order to allow a comparison, a NiO/0.76 at% NiFe2O4 mixture was also prepared. The X-ray diffraction pattern shows that the samples that were sintered at 400 and 600 °C remain single phase. As the sintering temperature increased to 800 °C, however, the sample becomes a mixture of NiO and NiFe2O4 ferrite phases. The samples were investigated by measuring their magnetization as a function of magnetic field. The samples sintered between 400 and 800 °C and the one mixed directly with NiFe2O4 nanoparticles show a coercivity value of Hc≈200, 325, 350 and 110 Oe, respectively. The magnetic properties of the samples depend strongly on the sintering temperature. Simultaneously, the field-cooling hysteresis loop shift also observed after cooling the sample sintered at 600 °C to low temperature suggests the possibility of the existence of a ferromagnetic/antiferromagnetic exchange coupling.  相似文献   

14.
Soft magnetic composites with a thin MgO insulating layer were produced by a sol-gel method. Energy dispersive X-ray spectroscopy, X-ray analysis, Fourier transform infrared spectroscopy, density measurement and compositional maps confirmed that thin layers of MgO covered the iron powders. Coercivity measurement showed that the stress relaxation and reduction of hysteresis loss efficiently occurred at 600 °C. At this temperature, the phosphate insulation of commercial SOMALOYTM samples degrade and their electrical resistivity, magnetic permeability and operating frequency decreases noticeably. The results show that the MgO insulation has a greater heat resistance than conventional phosphate insulation, which enables stress-relief at higher temperatures (600 °C) without a large increase in eddy current loss. The results of annealing at 600 °C show that the electrical resistivity and ferromagnetic resonance frequency increased from 11 μΩ m and 1 kHz for SOMALOYTM samples to 145 μΩ m and 100 kHz for the MgO insulated composites produced in this work.  相似文献   

15.
Ni0.25Cu0.2Zn0.55SmxFe2−xO4 ferrite with x=0.00, 0.025, 0.05 and 0.075 compositions were synthesized through the nitrate-citrate auto-combustion method. These powders were calcined, compacted and sintered at 900 °C for 4 h. Effect of Sm substitution on phase composition, microstructure and relative density were studied. Permeability, magnetic loss and AC resistivity were measured in the frequency range of 1 kHz-10 MHz. Permeability and AC resistivity were found to increase and loss decreased with Sm substitution up to x=0.05. Saturation magnetization also increased up to that substitution limit. Observed variations in electromagnetic properties have been explained.  相似文献   

16.
The current state of studies presents the effect of ternary addition of transition elements such as Mn, Cr and Si (10 wt%) on the mechanically driven non-equilibrium solubility of 40 wt% Co containing Cu–Co alloy. X-ray powder diffraction analysis indicates that addition of Mn has been found to be the most effective in enhancing the solubility and formation of a complete solid solution between Co and Cu in a short duration (30 h) of ball milling. The microstructure of the ball milled CuCoMn alloy was found to be stable after the isothermal annealing up to a temperature of 450 °C for 1 h. The magnetic properties such as magnetic saturation, coercivity and remanence of ball milled CuCo alloy in the presence of Mn significantly altered after annealing in the temperature range 350–650 °C for 1 h. The best combination of magnetic properties of CuCoMn alloy has been found after annealing at 550 °C for 1 h.  相似文献   

17.
Co0.5Zn0.5Fe2O4 nanoparticles were prepared using mechanical alloying (MA) and sintering. The crystallite size, coercivity, retentivity and saturation magnetization were also measured. The frequency dependence of dielectric and the magnetic parameters, namely, real permittivity ε′, loss tanget tan δ, real permeability μ′ and loss factor μ″ were measured at room temperature for samples sintered from 600 to 1000 °C, in the frequency range 10 MHz to 1.0 GHz. The results show that the crystallite size of the resulting products ranges between 16 and 67 nm for as-milled sample and the sample sintered at 1000 °C, respectively. The sample sintered at 1000 °C, measured at room temperature exhibited a saturation magnetization of 37 emu g−1. The values of permittivity remain constant within the measured frequency, but vary with sintering temperature. The permeability values, on the other hand however vary with both the sintering temperature and the frequency, thus, the absolute value of the permeability decreased after the natural resonance frequency.  相似文献   

18.
High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 °C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 Å each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 °C in a step of 100 °C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 °C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 °C due to the formation of TiNi3 and Ti2Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes.  相似文献   

19.
Magnetic properties of frustrated antiferromagnet TbAuIn are investigated by AC susceptibility, resistivity as well as specific heat measurements. In temperature dependence of the susceptibility two anomalies are visible, one at 33 K and another at 48 K. According to neutron diffraction studies the Néel temperature is 35 K. The second anomaly in the AC susceptibility seems to be attributed to antiferromagnetic cluster-glass state of Tb magnetic moments. The resistivity measurements confirm that TbAuIn exhibits long-range magnetic order below 35 K, moreover they reveal an anomalous behaviour above that temperature. However in the temperature dependence of the specific heat only one anomaly at 30 K is visible. The low temperature behaviour of susceptibility, resistivity and specific heat of the investigated antiferromagnetic material can be described, with a good accuracy, within the spin-wave theory with linear dispersion relation.  相似文献   

20.
A dextran-ferrite magnetic fluid was successfully tested as magnetic resonance imaging (MRI) contrast agent. The same magnetic fluid was then combined with Melphalan, a chemotherapeutic drug, and used for magnetohydrodynamic thermochemotherapy of different tumors. The placement of the tumors in an AC magnetic field led to hyperthermia at 46 °C for 30 min. In combination with tumor slime aspiration, a 30% regression of ∼130 mm3 non-metastatic P388 tumors in BDF1 mice was reached, together with a life span increase of 290%. The same procedure associated with cyclophosphamide treatment of ∼500 mm3 metastases tumor increased the animal's life span by 180%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号