首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In vitro selection is a method that allows the simultaneous screening of very large numbers of nucleic acid molecules for a wide range of properties from binding characteristics to catalytic properties; moreover, the isolation of the very rare functional molecules becomes possible. Binding sites between proteins and nucleic acids, for example, have been evaluated by this methodology in order to gain information about protein/nucleic acid interactions. Structure and function of catalytic RNA (“ribozymes”) has been studied by in vitro selection and has led to new ribozymes with improved catalytic function. Substrate specificity of catalytic RNA has been changed and has led to a ribozyme that cleaves DNA. Other applications include the isolation of nucleic acids that bind specifically to small organic molecules and of RNA molecules that form triple helices with double-stranded DNA. In this article we discuss the background, design, and results of in vitro genetic experiments, which bridge biochemical/molecular biological and organic chemical approaches to molecular recognition.  相似文献   

2.
Metal ions play important roles in both the structure and function of catalytic DNA and RNA. While most natural catalytic RNA molecules (ribozymes) are active in solutions containing Mg(2+), in vitro selection makes it possible to search for new catalytic DNA/RNA that are specific for other metal ions. However, previous studies have indicated that the in vitro selection protocols often resulted in catalytic DNA/RNA that were equally active or sometimes even more active with metal ions other than the metal ion of choice. To improve the metal ion specificity during the in vitro selection process, we implemented a negative selection strategy where the nucleic acid pool was subjected to a solution containing competing metal ions. As a result, those nucleic acids that were active with those metal ions are discarded. To demonstrate the effectiveness of the negative selection strategy, we carried out two parallel in vitro selections of Co(2+)-dependent catalytic DNA. When no negative selection was used in the selection process, the resulting catalytic DNA molecules were more active in solutions of Zn(2+) and Pb(2+) than in Co(2+). On the other hand, when the negative selection steps were inserted between the normal positive selection steps, the resulting catalytic DNA molecules were much more active with Co(2+) than in other metal ions including Zn(2+) and Pb(2+). These results suggest strongly that in vitro selection can be used to obtain highly active and specific transition metal ion-dependent catalytic DNA/RNA, which hold great promise as versatile and efficient endonucleases as well as sensitive and selective metal ion sensors.  相似文献   

3.
In vitro selection can be used to generate functional nucleic acids such as aptamers and ribozymes that can recognize a variety of molecules with high affinity and specificity. Most often these recognition events are associated with structural alterations that can be converted into detectable signals. Several signaling aptamers and ribozymes constructed by both design and selection have been successfully utilized as sensitive detection reagents. Here we summarize the development of different types of signaling nucleic acids, and approaches that have been implemented in the screening format.  相似文献   

4.
Hammerhead ribozymes that are subject to allosteric control by small molecule and oligonucleotide effectors have been reported recently. Rational design has been an effective strategy for the creation of these ribozymes, which incorporate structurally interdependent hammerhead motifs and effector-binding sequences. In this paper we report the rational design of the first protein-responsive allosteric ribozymes that are regulated by the HIV-1 Tat. The TAR-Tat interaction of HIV-1 has the interesting feature that both Tat and arginine are able to bind to and bring about comparable conformational changes in the TAR loop. Here we describe the construction of two classes of TAR-modified hammerhead ribozymes and their response to Tat protein and to its derivatives. Instances of both allosteric activation and inhibition were found. Interestingly, the activation response was stimulated by both Tat and argininamide while the inhibitory response was stimulated by Tat and by its derivative peptide, ADP1, but not by argininamide. Overall, the extent of allosteric response in our ribozymes was modest relative to those reported for ribozymes with small molecule effectors. Future work utilizing combinatorial approaches along with elements of rational design should reveal the means by which highly efficient, protein-mediated allostery of ribozymes may be achieved.  相似文献   

5.
《Chemistry & biology》1997,4(6):453-459
Background: Efficient operation of cellular processes relies on the strict control that each cell exerts over its metabolic pathways. Some protein enzymes are subject to allosteric regulation, in which binding sites located apart from the enzyme's active site can specifically recognize effector molecules and alter the catalytic rate of the enzyme via conformational changes. Although RNA also performs chemical reactions, no ribozymes are known to operate as true allosteric enzymes in biological systems. It has recently been established that small-molecule receptors can readily be made of RNA, as demonstrated by the in vitro selection of various RNA aptamers that can specifically bind corresponding ligand molecules. We set out to examine whether the catalytic activity of an existing ribozyme could be brought under the control of an effector molecule by designing conjoined aptamer-ribozyme complexes.Results: By joining an ATP-binding RNA to a self-cleaving ribozyme, we have created the first example of an allosteric ribozyme that has a catalytic rate that can be controlled by ATP. A 180-fold reduction in rate is observed upon addition of either adenosine or ATP, but no inhibition is detected in the presence of dATP or other nucleoside triphosphates. Mutations in the aptamer domain that are expected to eliminate ATP binding or that increase the distance between aptamer and ribozyme domains result in a loss of ATP-specific allosteric control. Using a similar design approach, allosteric hammerhead ribozymes that are activated in the presence of ATP were created and another ribozyme that can be controlled by theophylline was created.Conclusions: The catalytic features of these conjoined aptamer-ribozyme constructs demonstrate that catalytic RNAs can also be subject to allosteric regulation — a key feature of certain protein enzymes. Moreover, by using simple rational design strategies, it is now possible to engineer new catalytic polynucleotides which have rates that can be tightly and specifically controlled by small effector molecules.  相似文献   

6.
In vitro selection can be used to generate nucleic acid binding species (aptamers) and catalysts (ribozymes) that can recognize a variety of molecules. Because nucleic acid function is largely derived from readily tabulated secondary structures, it has proven possible to engineer aptamers and ribozymes to function as biosensors. Labeling nucleic acids with reporter molecules has yielded simple antibody substitutes, but by relying on ligand-dependent conformational changes it has also proven possible to generate biosensors that can recognize and specifically report the presence of ligands in homogenous solution. It may prove possible to generate signaling aptamers and allosteric ribozymes (aptazymes) that are responsive to a large fraction of an organismal proteome or metabolome using automated methods. Nucleic acid biosensor arrays for non-nucleic acid targets could likely be generated with the same facility as DNA chips.  相似文献   

7.
BACKGROUND: Ribonucleotide-based enzymes (ribozymes) that cleave pathological RNAs are being developed as therapeutic agents. Chemical modification of the hammerhead ribozyme has produced nuclease-resistant catalysts that cleave targeted mRNAs in cell culture and exhibit antitumor activity in animals. Unfortunately, stabilizing modifications usually reduce the catalytic rate in vitro. An alternative to rationally designed chemical modifications of existing ribozymes is to identify novel motifs through in vitro selection of nuclease-stable sequence space. This approach is desirable because the catalysts can be optimized to function under simulated physiological conditions. RESULTS: Utilizing in vitro selection, we have identified a nuclease-stable phosphodiesterase that demonstrated optimal activity at simulated physiological conditions. The initial library of 10(14) unique molecules contained 40 randomized nucleotides with all pyrimidines in a nuclease-stabilized 2'-deoxy-2'-amino format. The selection required trans-cleaving activity and base-pairing specificity towards a resin-bound RNA substrate. Initial selective pressure was permissive, with a 30 min reaction time and 25 mM Mg(2+). Stringency of selection pressure was gradually increased until final conditions of 1 mM Mg(2+) and less than 1 min reaction times were achieved. The resulting 61-mer catalyst required the 2'-amino substitutions at selected pyrimidine positions and was stable in human serum (half-life of 16 h). CONCLUSIONS: We demonstrated that it is possible to identify completely novel, nuclease-resistant ribozymes capable of trans-cleaving target RNAs at physiologically relevant Mg(2+) concentrations. The new ribozyme motif has minimal substrate requirements, allowing for a wide range of potential RNA targets.  相似文献   

8.
Light‐driven control of biological processes using photoswitchable proteins allows high spatiotemporal interrogation or manipulation of such processes, assisting in understanding their functions. Despite considerable advances, however, the wide spread use of optical control has been hampered by a limited repertoire of photoswitchable proteins and a lack of generalized design strategy. Herein, we present a repeat module‐based rational design of a photoswitchable protein composed of LRR (Leucine‐rich repeat) modules using azobenzene as a photochromic ligand. Our design approach involves the rational selection of a Cβ pair between two nearby modules within a convex region and subsequent cross‐linking with a photochromic ligand. We demonstrate the general utility and potential of our strategy by showing the design of three target‐specific photoswitchable proteins and a light‐driven modulation of the cell signaling. With an abundance of LRR proteins in nature, our approach can expand the repertoire of photoswitchable proteins for light‐driven control of biological processes.  相似文献   

9.
BACKGROUND: The 'RNA world' hypothesis requires that RNA be able to catalyze a wide variety of chemical reactions. In vitro selection from combinatorial RNA libraries has been used to identify several catalytic activities, most of which have resulted in a self-modification of RNA at one of its constituents. The formation of carbon-carbon bonds is considered an essential prerequisite for a complex metabolism based on RNA. RESULTS: We describe the selection and characterization of new ribozymes that catalyze carbon-carbon bond formation by Diels-Alder reaction of a biotinylated maleimide with an RNA-tethered anthracene. Secondary structure analysis identified a 49-nucleotide RNA motif that accelerates the reaction about 20,000-fold. The motif has only 11 conserved nucleotides that are present in most of the selected sequences. The ribozyme motif is remarkably adaptable with respect to cofactor and metal-ion requirements. The motif was also re-engineered to give a 38-mer RNA that can act as a 'true' catalyst on short external substrate oligonucleotide-anthracene conjugates. CONCLUSIONS: We have identified a small, highly abundant RNA motif that can solve the complex task of forming two carbon-carbon bonds between two reactants in trans, a catalytic capacity useful for creating prebiotically relevant molecules. This is the smallest and fastest RNA catalyst for carbon-carbon bond formation reported to date.  相似文献   

10.
The last few years have seen a considerable increase in our understanding of catalysis by naturally occurring RNA molecules called ribozymes. The biological functions of RNA molecules depend upon their adoption of appropriate three-dimensional structures. The structure of RNA has a very important electrostatic component, which results from the presence of charged phosphodiester bonds. Metal ions are usually required to stabilize the folded structures and/or catalysis. Some ribozymes utilize metal ions as catalysts, whereas others use the ions to maintain appropriate three-dimensional structures. In the latter case, the correct folding of the RNA structures can perturb the pKa values of the nucleotide(s) within a catalytic pocket such that they act as general acid/bases catalysts.  相似文献   

11.
In vitro selected ribozymes are promising tools for site‐specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2′,5′‐branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S rRNAs in total cellular RNA.  相似文献   

12.
In vitro selected ribozymes are promising tools for site-specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2′,5′-branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S rRNAs in total cellular RNA.  相似文献   

13.
BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.  相似文献   

14.
The discovery of naturally occurring catalytic RNA (RNA enzymes, or ribozymes) in the 1980s immediately revised the view of RNA as a passive messenger that solely carries information from DNA to proteins. Because DNA and RNA differ only by the absence or presence of a 2'-hydroxyl group on each ribose ring of the polymer, the question of 'catalytic DNA?' arises. Although no natural DNA catalysts have been reported, since 1994 many artificial DNA enzymes, or 'deoxyribozymes', have been described. Deoxyribozymes offer insight into the mechanisms of natural and artificial ribozymes. DNA enzymes are also used as tools for in vitro and in vivo biochemistry, and they are key components of analytical sensors. This review focuses primarily on catalytic DNA for synthetic applications. Broadly defined, deoxyribozymes may have the greatest potential for catalyzing reactions in which the high selectivities of 'enzymes' are advantageous relative to traditional small-molecule catalysts. Although the scope of DNA-catalyzed synthesis is currently limited in most cases to oligonucleotide substrates, recent efforts have began to expand this frontier in promising new directions.  相似文献   

15.
Large ribozymes are unique among catalytic RNA molecules in that their reactions involve intermolecular nucleophilic attack on an RNA phosphodiester linkage. Crystal structures of near‐atomic resolution are now available for the group I and group II self‐splicing introns and the RNA subunit of RNase P. The structural data agrees well with the earlier models proposed on the basis of biochemical studies and the evidence at hand suggests that all of the large ribozymes utilize a mechanism in which coordination of MgII ions reduces the negative charge on the scissile phosphodiester linkage, as well as assists both the nucleophilic attack and the departure of the leaving group.  相似文献   

16.
A second divalent metal ion in the group II intron reaction center   总被引:5,自引:0,他引:5  
Group II introns are mobile genetic elements that have been implicated as agents of genetic diversity, and serve as important model systems for investigating RNA catalysis and pre-mRNA splicing. In the absence of an atomic-resolution structure of the intron, detailed understanding of its catalytic mechanism has remained elusive. Previous identification of a divalent metal ion stabilizing the leaving group in both splicing steps suggested that the group II intron may employ a "two-metal ion" mechanism, a catalytic strategy used by a number of protein phosphoester transfer enzymes. Using metal rescue experiments, we now reveal the presence of a second metal ion required for nucleophile activation in the exon-ligation step of group II intron splicing. Coupled with biochemical and structural evidence of at least two metal ions at the group I intron reaction center, these results suggest a mechanistic paradigm for describing catalysis by large ribozymes.  相似文献   

17.
18.
Kim DE  Joyce GF 《Chemistry & biology》2004,11(11):1505-1512
A self-replicating RNA ligase ribozyme was converted to a cross-catalytic format whereby two ribozymes direct each other's synthesis from a total of four component substrates. Each ribozyme binds two RNA substrates and catalyzes their ligation to form the opposing ribozyme. The two ribozymes are not perfectly complementary, as is the case for replicating nucleic acid genomes in biology. Rather, the ribozymes contain both template elements, which are complementary, and catalytic elements, which are identical. The specificity of the template interactions allows the cross-catalytic pathway to dominate over all other reaction pathways. As the concentration of the two ribozymes increases, the rate of formation of additional ribozyme molecules increases, consistent with the overall autocatalytic behavior of the reaction system.  相似文献   

19.
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.  相似文献   

20.
《Chemistry & biology》1998,5(10):539-553
Background: One of the most significant questions in understanding the origin of life concerns the order of appearance of DNA, RNA and protein during early biological evolution. If an ‘RNA world’ was a precursor to extant life, RNA must be able not only to catalyze RNA replication but also to direct peptide synthesis. Iterative Iterative RNA selection previously identified catalytic RNAs (ribozymes) that form amide bonds between RNA and an amino acid or between two amino acids.Results: We characterized peptidyl-transferase reactions catalyzed by two different families of ribozymes that use substrates that mimic A site and P site tRNAs. The family II ribozyme secondary structure was modeled using chemical modification, enzymatic digestion and mutational analysis. Two regions resemble the peptidyl-transferase region of 23S ribosomal RNA in sequence and structural context; these regions are important for peptide-bond formation. A shortened form of this ribozyme was engineered to catalyze intermolecular (‘trans’) peptide-bond formation, with the two amino-acid substrates binding through an attached AMP or oligonucleotide moiety.Conclusions: An in vitro-selected ribozyme can catalyze the same type of peptide-bond formation as a ribosome; the ribozyme resembles the ribosome because a very specific RNA structure is required for substrate binding and catalysis, and both amino acids are attached to nucleotides. It is intriguing that, although there are many different possible peptidyl-transferase ribozymes, the sequence and secondary structure of one is strikingly similar to the ‘helical wheel’ portion of 23S rRNA implicated in ribosomal peptidyl-transferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号