首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lok KS  Kwok YC  Nguyen NT 《The Analyst》2011,136(12):2586-2591
This paper reports a microchip with an integrated passive micromixer based on chaotic advection. The micromixer with staggered herringbone structures was used for luminol-peroxide chemiluminescence detection. The micromixer was examined to assess its suitability for chemiluminescence reaction. The relationship between the flow rate and the location of maximum chemiluminescence intensity was investigated. The light intensity was detected using an optical fiber attached along the mixing channel and a photon detector. A linear correlation between chemiluminescence intensity and the concentration of cobalt(ii) ions or hydrogen peroxide was observed. This microchip has a potential application in environmental monitoring for industries involved in heavy metals and in medical diagnostics.  相似文献   

2.
Hashimoto M  Barany F  Xu F  Soper SA 《The Analyst》2007,132(9):913-921
We have fabricated a flow-through biochip consisting of passive elements for the analysis of single base mutations in genomic DNA using polycarbonate (PC) as the substrate. The biochip was configured to carry out two processing steps on the input sample, a primary polymerase chain reaction (PCR) followed by an allele-specific ligation detection reaction (LDR) for scoring the presence of low abundant point mutations in genomic DNA. The operation of the device was demonstrated by detecting single nucleotide polymorphisms in gene fragments (K-ras) that carry high diagnostic value for colorectal cancers. The effect of carryover from the primary PCR on the subsequent LDR was investigated in terms of LDR yield and fidelity. We found that a post-PCR treatment step prior to the LDR phase of the assay was not essential. As a consequence, a thermal cycling microchip was used for a sequential PCR/LDR in a simple continuous-flow format, in which the following three steps were carried out: (1) exponential amplification of the gene fragments from genomic DNA; (2) mixing of the resultant PCR product(s) with an LDR cocktail via a Y-shaped passive micromixer; and (3) ligation of two primers (discriminating primer that carried the complement base to the mutation locus being interrogated and a common primer) only when the particular mutation was present in the genomic DNA. We successfully demonstrated the ability to detect one mutant DNA in 1000 normal sequences with the integrated microfluidic system. The PCR/LDR assay using the microchip performed the entire assay at a relatively fast processing speed: 18.7 min for 30 rounds of PCR, 4.1 min for 13 rounds of LDR (total processing time = ca. 22.8 min) and could screen multiple mutations simultaneously in a multiplexed format. In addition, the low cost of the biochip due to the fact that it was fabricated from polymers using replication technologies and consisted of passive elements makes the platform amenable to clinical diagnostics, where one-time use devices are required to eliminate false positives resulting from carryover contamination.  相似文献   

3.
In solid-phase peptide synthesis using the Fmoc/tBu strategy (SPPS-Fmoc/tBu), an orthogonal protection scheme of amino acids is used; specifically, the alpha-amine group is protected by the 9-fluorenylmethyloxycarbonyl (Fmoc) group, which is removed by weak bases, while side chains are protected by groups that are acid labile. We demonstrated that hydrazine hydrate is an efficient reagent for eliminating the Fmoc group in SPPS-Fmoc/tBu. First, experimental conditions were established for Fmoc group removal from Fmoc-Val-OH in solution. It was determined that the Fmoc group was completely removed with 16% hydrazine hydrate in DMF after 60?min at rt. Second, SPPS-Fmoc/tBu using hydrazine hydrate for Fmoc group removal was standardized. The Fmoc group removal was completed using 16% hydrazine hydrate in DMF for 10?min at rt (twice). When the reaction of Fmoc group removal was microwave-assisted, the reaction only required 30?s to efficiently remove the Fmoc group in SPPS-Fmoc/tBu. The method reported here can be routinely used, and it is equivalent to conventional SPPS-Fmoc/tBu methodologies where 4-methylpiperidine or piperidine is used.  相似文献   

4.
Aryl thioesters of peptide segments were prepared by the conventional 9-fluorenylmethoxycarbonyl (Fmoc) strategy using a novel N-alkyl cysteine (NAC)-assisted thioesterification reaction. The peptide carrying NAC at its C-terminus was prepared by the Fmoc strategy and converted to the aryl thioester by 4-mercaptophenylacetic acid (MPAA) treatment without significant side reactions. The peptide thioester was used for the efficient preparation of 95-amino acid (AA) chemokine CCL27 by an Ag(+)-free thioester method.  相似文献   

5.
含微混合器的微芯片设计和性能研究   总被引:8,自引:0,他引:8  
微型化分析系统是分析化学的新兴研究领域,研究中设计制作的微芯片,由按层流原理设计制作的交叉分液汇合式微混合器及长反应管道组成。两种荧光染料混合实验可以直观地观测到微混合器的混合效果,而对Hg^2+-若丹明B的荧光猝灭反应的标准曲线法定量分析表明该设计的微芯片可应用于化学反应过程的定量测试。该微芯片在化学与生化分析和合成等分析检测领域具有巨大的潜在应用价值。  相似文献   

6.
Peptide nucleic acids (PNA) oligomers were synthesized in most cases by peptide a peptide synthesis from N-protected monomers. In this work a new method of obtaining PNA monomer by Ugi four-component condensation reaction was tested by solid-phase synthesis. The Fmoc protected PNA monomer was build up with thymin-l-yl acetic acid, 3-methylbutyl aldehyde, Fmoc protected aminoethyl isocyanide and Gly-Wang resin.  相似文献   

7.
葡萄糖是临床化学诊断以及食品分析中重要的检测项目 ,最常用的测定方法是采用葡萄糖氧化酶(GOD)催化葡萄糖与氧分子间反应 ,生成葡萄糖酸和过氧化氢 [1] ,而对过氧化氢的检测则可采用过氧化酶 (POD)催化鲁米诺的化学发光反应进行 [2 ] .FIA对整个过程的实现是十分有效的方式 ,但由于多采用固定化酶反应器 [3~ 5] 使其在制备及分析上较复杂且费用高 .由 Manz等[6] 提出的微型全分析系统(μ- TAS)在针对不同体系的微量分析及在线监测上均具有突出的优越性 .本文使用的含微混合器的微芯片化学反应器采用μ- TAS设计思想 ,建立了化学发…  相似文献   

8.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one‐pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N‐masking group of the N‐terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o‐aminoanilide. The ready availability of Fmoc‐Cys(Trt)‐OH, which is routinely used in Fmoc solid‐phase peptide synthesis, where the Fmoc group is pre‐installed on cysteine residue, minimizes additional steps required for the temporary protection of the N‐terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

9.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

10.
Kim DS  Lee SH  Kwon TH  Ahn CH 《Lab on a chip》2005,5(7):739-747
Mixing enhancement has drawn great attention from designers of micromixers, since the flow in a microchannel is usually characterized by a low Reynolds number (Re) which makes the mixing quite a difficult task to accomplish. In this paper, a novel integrated efficient micromixer named serpentine laminating micromixer (SLM) has been designed, simulated, fabricated and fully characterized. In the SLM, a high level of efficient mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination (in other terms, lamination) mechanism is obtained by the successive arrangement of "F"-shape mixing units in two layers. The advection is induced by the overall three-dimensional serpentine path of the microchannel. The SLM was realized by SU-8 photolithography, nickel electroplating, injection molding and thermal bonding. Mixing performance of the SLM was fully characterized numerically and experimentally. The numerical mixing simulations show that the advection acts favorably to realize the ideal vertical lamination of fluid flow. The mixing experiments based on an average mixing color intensity change of phenolphthalein show a high level of mixing performance was obtained with the SLM. Numerical and experimental results confirm that efficient mixing is successfully achieved from the SLM over the wide range of Re. Due to the simple and mass producible geometry of the efficient micromixer, SLM proposed in this study, the SLM can be easily applied to integrated microfluidic systems, such as micro-total-analysis-systems or lab-on-a-chip systems.  相似文献   

11.
In microfluidics the Reynolds number is small, preventing turbulence as a tool for mixing, while diffusion is that slow that time does not yield an alternative. Mixing in microfluidics therefore must rely on chaotic advection, as well-known from polymer technology practice where on macroscale the high viscosity makes the Reynolds numbers low and diffusion slow. The mapping method is used to analyze and optimize mixing also in microfluidic devices. We investigate passive mixers like the staggered herringbone micromixer (SHM), the barrier embedded micromixer (BEM) and a three-dimensional serpentine channel (3D-SC). Active mixing is obtained via incorporating particles that introduce a hyperbolic flow in e.g. two dimensional serpentine channels. Magnetic beads chains-up in a flow after switching on a magnetic field. Rotating the field creates a physical rotor moving the flow field. The Mason number represents the ratio of viscous forces to the magnetic field strength and its value determines the fate of the rotor: a single, an alternating single and double, or a multiple part chain-rotor results. The type of rotor determines the mixing quality with best results in the alternating case where crossing streamlines introduce chaotic advection. Finally, an active mixing device is proposed that mimics the cilia in nature. The transverse flow induced by their motion indeed enhances mixing at the microscale.  相似文献   

12.
A microchip-based enzyme-linked immunosorbent assay (microELISA) system was developed and interferon-gamma was successfully determined. The system was composed of a microchip with a Y-shaped microchannel and a dam structure, polystyrene microbeads, and a thermal lens microscope (TLM). All reactions required for the immunoassay were done in the microchannel by successive introduction of a sample and regents. The enzyme reaction product, in a liquid phase, was detected downstream in the channel using the TLM as substrate solution was injected. The antigen-antibody reaction time was shortened by the microchip integration. The limit of the determination was improved by adopting the enzyme label. Moreover, detection procedures were greatly simplified and required time for the detection was significantly cut. The system has good potential to be developed as a small and automated high throughput analyzer.  相似文献   

13.
An efficient solid-phase method for the total synthesis of bacitracin A is reported. This work was undertaken in order to provide a general means of probing the intriguing mode of action of the bacitracins and exploring their potential for use against emerging drug-resistant pathogens. The synthetic approach to bacitracin A involves three key features: (1) linkage to the solid support through the side chain of the L-asparaginyl residue at position 12 (L-Asn(12)), (2) cyclization through amide bond formation between the alpha-carboxyl of L-Asn(12) and the side chain amino group of L-Lys(8), and (3) postcyclization addition of the N-terminal thiazoline dipeptide as a single unit. To initiate the synthesis, Fmoc L-Asp(OH)-OAllyl was attached to a PAL resin. The chain of bacitracin A was elaborated in the C-to-N direction by sequential piperidine deprotection/HBTU-mediated coupling cycles with Fmoc D-Asp(OtBu)-OH, Fmoc L-His(Trt)-OH, Fmoc D-Phe-OH, Fmoc L-Ile-OH, Fmoc D-Orn(Boc)-OH, Fmoc L-Lys(Aloc)-OH, Fmoc L-Ile-OH, Fmoc D-Glu(OtBu)-OH, and Fmoc L-Leu-OH. The allyl ester and allyl carbamate protecting groups of L-Asn(12) and L-Lys(8), respectively, were simultaneously and selectively removed by treating the peptide-resin with palladium tetrakis(triphenylphosphine), acetic acid, and triethylamine. Cyclization was effected by PyBOP/HOBT under the pseudo high-dilution conditions afforded by attachment to the solid support. After removal of the N-terminal Fmoc group, the cyclized peptide was coupled with 2-[1'(S)-(tert-butyloxycarbonylamino)-2'(R)-methylbutyl]-4(R)-carboxy-Delta(2)-thiazoline (1). The synthetic peptide was deprotected and cleaved from the solid support under acidic conditions and then purified by reverse-phase HPLC. The synthetic material exhibited an ion in the FAB-MS at m/z 1422.7, consistent with the molecular weight calculated for the parent ion of bacitracin A (MH(+) = C(73)H(84)N(10)O(23)Cl(2), 1422.7 g/mol). It was also indistinguishable from authentic bacitracin A by high-field (1)H NMR and displayed antibacterial activity equal to that of the natural product, thus confirming its identity as bacitracin A. The overall yield for the solid-phase synthesis was 24%.  相似文献   

14.
We developed a novel microbioassay system equipped with a gradient mixer of two solutions, and we applied the microfluidic system to an anti-cancer agent test using living animal cells on a microchip. A microchannel for the gradient mixing of two solutions and eight other microchannels for cell assay were fabricated on a poly(dimethylsiloxane) substrate using a soft-lithography method. The functions necessary for this bioassay, i.e., cell culturing, chemical stimulation, cell staining, and fluorescence determination, were integrated into the microfluidic chip. Eight gradient concentrations of the fluorescein solution, ranging from 1 to 98 microg/ml, were archived at 0.1 microl/min on a microchip. A stomach cancer cell line was cultured, and a cell viability assay was conducted using 5-Fluorouracil as an anti-cancer agent on the microchip. Cell viability changed according to the estimated concentration of the agent solution. With the microbioassay system, an anti-cancer agent test was conducted using living cells simultaneously in eight individual channels with the gradient concentration of the agent on a microchip.  相似文献   

15.
[reaction: see text] Total chemical synthesis of proteins by chemoselective ligation relies on C-terminal peptide thioesters as building blocks. Their preparation by standard Fmoc solid-phase peptide synthesis is made difficult by the lability of thioesters to aminolysis by the secondary amines used for removal of the Fmoc group. Here we present a novel backbone amide linker (BAL) strategy for their synthesis in which the thioester functionality is masked as a trithioortho ester throughout the synthesis.  相似文献   

16.
In this work, a combination of complementary metal-oxide semiconductor (CMOS) microchip system with capillary array electrophoresis (CAE) is demonstrated as a system for optimizing conditions for enzymatic reaction. Dimethylacridinone (DDAO)-phosphate substrate and alkaline phosphatase conjugate were selected for the enzymatic reaction, which was applicable to the enzyme-linked immunosorbent assay (ELISA) technique. Laser-induced fluorometry with a miniature semiconductor laser was used to detect the enzymatic products. The speed of the enzymatic reaction between the DDAO-phosphate and the alkaline phosphatase conjugate was investigated as a function of reaction time. The microchip-CAE detection system could determine the pH condition and the concentration of enzyme that are suitable for rapid and low-cost analysis. This result shows the feasibility of using the microchip-CAE system for application to miniaturized screening systems.  相似文献   

17.
A simple and practical synthesis of the benzyl, allyl, and 4-nitrobenzyl esters of N-[2-(Fmoc)aminoethyl]glycine is described starting from the known N-(2-aminoethyl)glycine. These esters are stored as stable hydrochloride salts and were used in the synthesis of peptide nucleic acid monomers possessing bis-N-Boc-protected nucleobase moieties on the exocyclic amino groups of ethyl cytosin-1-ylacetate, ethyl adenin-9-ylacetate and ethyl (O(6)-benzylguanin-9-yl)acetate. Upon ester hydrolysis, the corresponding nucleobase acetic acids were coupled to N-[2-(Fmoc)aminoethyl]glycine benzyl ester or to N-[2-(Fmoc)aminoethyl]glycine allyl ester in order to retain the O(6) benzyl ether protecting group of guanine. The Fmoc/bis-N-Boc-protected monomers were successfully used in the Fmoc-mediated solid-phase peptide synthesis of mixed sequence 10-mer PNA oligomers and are shown to be a viable alternative to the currently most widely used Fmoc/Bhoc-protected peptide nucleic acid monomers.  相似文献   

18.
The activity of Botulinum neurotoxin type A (BoNT A) can be measured by monitoring the toxin's endopeptidase reaction with its peptide substrate. In this report, a sensitive and simple capillary electrophoresis (CE) method for analysing BoNT A activity was developed using a peptide substrate labelled with Fluorescein isothiocynate (FITC) at the N-terminal and biotin at the C-terminal. This dual labelling enables not only highly sensitive laser induced fluorescence (LIF) detection of the reaction product, but also good analytical separation of the product from the peptide substrate by Micellar Electrokinetic Chromatography (MEKC). The separation between the product peak and the substrate peak was approximately 5 min using the dual-labelled substrate, while just about 1 min using the FITC-labelled substrate without biotinylation. Using the current assay method, BoNT A with concentration as low as 0.1 ng ml?1 (3.6 U mL?1 in mouse LD50) in water was detected with a S:N ratio of 3 (RSD <19%) and a linear range of four orders of magnitude. With CE's advantages of very small sample volume needed, this method may find particular applications as in assays of BoNT A activity in water samples and kinetic analyses of toxin activity.  相似文献   

19.
The NY-ESO-1 (A39-A68) peptide hydrazide was prepared through 9-fluorenyl-methoxycarbonyl solid-phase peptide synthesis (Fmoc SPPS) from a new 9-fluorenyl-methoxycarbonyl hydrazine 2-chlorotrityl chloride (Fmoc-hydrazine 2CTC) resin. The new resin was ideal for long-term storage and usage in Fmoc SPPS. Besides, the title peptide hydrazide could be transformed nearly quantitatively into the corresponding peptide thioester, which was both isolable and usable directly in native chemical ligation (NCL).  相似文献   

20.
A novel mass spectrometry-based assay system for determining protein kinase activity employing mass-tagged substrate peptide probes was used for the diagnosis of tumors. Two peptide probes (H-type and D-type) were synthesized containing the same substrate peptide sequence for protein kinase C (PKC). The molecular weights of the two probes differ because of the incorporation of deuterium into the acetyl groups of the D-type probe. The lysates of the normal and tumor tissue were prepared and reacted with the H- and D-type peptide probes, respectively. The PKC activities of the normal and tumor tissues can be compared simply and directly by calculating the phosphorylated ratio to each peptide probe, obtained from the peak intensity of the mass spectrum after mixing of the two reaction solutions. The phosphorylation ratio for the reaction of the H-type peptide probe with the tumor tissue lysate (B16 melanoma) was more than three times higher than that of the D type peptide probe with the normal skin tissue lysate. These results show that the novel assay system for detecting protein kinase activity using mass-tag technology can be a simple and useful means to profile protein kinase activity for cell or tissue lysate samples, and can be applied to the diagnosis of tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号