首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Chalcogenide glasses are interesting materials due to their infrared transmitting properties and photo induced effects exhibited by them. Thin films with thickness of 3000 Å of the glasses Se75S25−xCdx with x=6, 8 and 10 at% prepared by melt quench technique were evaporated by thermal evaporation onto glass substrates under a vacuum of 10−6 Torr. The optical constants (absorption coefficient, refractive index and extinction coefficient) of as-prepared and annealed films have been studied as a function of photon energy in the wave length region 400-1000 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been found that the absorption coefficient and optical band gap increase with increasing annealing temperatures. The refractive index (n) and the extinction coefficient (k) were observed to decrease with increasing annealing temperature.  相似文献   

2.
Well-crystallized 250 nm-thick SrTiO3 thin films on fused-quartz substrate were prepared by pulsed laser deposition. The band-gap of SrTiO3 thin film by transmittance spectra is equal to 3.50 eV, larger than 3.22 eV for the bulk crystal. The nonlinear optical properties of the films were examined with picosecond pulses at 1.064 μm excitation. A large two-photon absorption (TPA) with absorption coefficient of 87.7 cm/GW was obtained, larger than 51.7 cm/GW for BaTiO3 thin films. The nonlinear refractive index n2 is equal to 5.7×10−10 esu with a negative sign, larger than 0.267×10−11 esu for bulk SrTiO3. The large TPA is attributed to intermediate energy levels introduced by the grain boundaries, and the optical limiting behaviors stemming from both TPA and negative nonlinear refraction were also discussed.  相似文献   

3.
(Ba0.7Sr0.3)TiO3 (BST) ferroelectric thin films with perovskite crystal structure were fabricated by soft solution processing on a quartz substrate. The third-order nonlinear optical properties were investigated by using Z-scan technique. Positive nonlinear refractive index and nonlinear absorption coefficient were determined to be 4×10−7 esu and 1.2×10−6 m/w, respectively. The real part and imaginary part of third-order optical nonlinear susceptibility were calculated and the values were 6.43×10−8 and 5.14×10−8 esu, respectively. All of these results show ferroelectric BST thin film is promising for applications in nonlinear optical devices.  相似文献   

4.
The nonlinear optical properties of the poly1,4-diazophenylene-bridged-tris(8-hydroxy-quinoline) aluminum (PDPAlq3) solution were studied using single beam Z-scan technique with a continuous-wave Diode laser radiation at 657.2 nm with 10 Hz repetition rate. The results show that the solution of PDPAlq3 exhibits large nonlinear refractive index (n2 = −1.7642 × 10−12 m2/W) and nonlinear absorption coefficient (β = 1.12 × 10−6 m/W). The negative sign of the nonlinear refractive index n2 indicates that the material exhibits self-defocusing optical nonlinearity. The evaluation of the figure of merit (W = 1.8) shows that the solution of PDPAlq3 is sufficient for application in all-optical switching technology. These results show that the solution of PDPAlq3 have potential application in nonlinear optics.  相似文献   

5.
New fluorophosphate glasses based on MnF2, NaPO3 and MFn (M=Zn2+, Sr2+, Mg2+, Ba2+, Li+, Na+ and K+) have been synthesised and characterized. Large vitreous areas were observed. Samples of 4 mm in thickness have been obtained. These glasses are easy to prepare and stable in ambient air. Depending on the composition and the nature of the M cation, glass transition temperature, Tg, lies between 230 and 314 °C, crystallisation temperature, Tx is between 320 and 475 °C. These glasses are pink coloured, and infrared transmission extends up to 4.5 μm with extrinsic OH absorption band at 3200 cm−1 and other bands around 2200 and 1600 cm−1 that relate to PO4 tetrahedron vibration. Other physical properties including density, microhardness, Young modulus, thermal expansion and refractive index were investigated and correlated to composition.  相似文献   

6.
Periodic Au nanoparticle arrays were fabricated on silica substrates using nanosphere lithography. The identical single-layer masks were prepared by self-assembly of polystyrene nanospheres with radius R = 350 nm. The structural characterization of nanosphere masks and periodic particle arrays was investigated by atomic force microscopy. The nonlinear optical properties of the Au nanoparticle arrays were determined using a single beam z-scan method at a wavelength of 532 nm with laser duration of 55 ps. The results show that periodic Au nanoparticle arrays exhibit a fast third-order nonlinear optical response with the nonlinear refractive index and nonlinear absorption coefficient being n2 = 6.09 × 10−6 cm2/kW and β = −1.87 × 10−6 m/W, respectively.  相似文献   

7.
Optical parameters of bulk animal tissue in vitro, including absorption coefficient (μa), reduced scattering coefficient (μs) or scattering coefficient (μs), total attenuation coefficient (μt), anisotropy factor (g) and refractive index (n) are measured at wavelength of 650 nm. Clinical Intralipid-10% is diluted in distilled water into different concentrations to use as tissue phantoms. Four types of animal tissues in vitro are studied. The relationships among the optical parameters are analyzed systemically. For animal tissues, μa, μs or μs and n rely on muscle fiber orientations. μs and μt range from 10 to 20 mm−1, μa from 10−2 to 10−3 mm−1 and g from 0.95 to 0.99.  相似文献   

8.
Photophysical and nonlinear optical properties of zinc phthalocyanines (ZnPc) bearing peripheral phenoxy substituents containing different functionalized groups were studied. Fluorescence spectra corresponding to the optical transition S1 → S0 are found to be appeared at 684 or 686.4 nm. Z-scan technique reveals large nonlinearities, where the absorptive and refractive effects are separately evaluated. Saturation absorption of ZnPc-1 was observed at 632.8 nm, with a very large nonlinear absorption coefficient β = −1.36 × 10−2 cm/W. However a strong nonlinear refractive effect was found in all ZnPcs (1-4). Transmitted versus incident irradiance measurements carried out on ZnPc-1 and ZnPc-2, showed a very clear optical limiting behavior with irradiance thresholds around be 44 W/cm2 and 90 W/cm2 respectively.  相似文献   

9.
In the present work different optical properties of xTiO2-(60 − x)SiO2-40Na2O (wt%) optical glasses are determined. The characterization is done over a wide energy range, 0.41-6.2 eV. The refractive index and the extinction coefficient data are used to measure the absorption coefficient of the different glass compositions. Studying the UV-absorption edge, both direct and indirect allowed transitions with their optical energy gaps are carried out. In the same time, the Urbach energy is evaluated. From the extinction coefficient data, the Fermi energy of the glasses is calculated. The molar refraction, electronic polarizability and the optical basicity are obtained using the measured glass refractive indices.  相似文献   

10.
This paper centers on the deposition process and optical properties of collodion film. Collodion film was prepared on the double side polished silicon and k9 optical glass using the sol–gel method. The studying results have showed four characteristics of collodion film. First of all, the thickness of collodion film decreases with increasing the revolution speed. Secondly, the refractive index of collodion film changes from 1.529306 to 1.500128, which accords with the normal dispersion. Thirdly, the transmittance of collodion film is higher in the visible wavelength range 380–760 nm and its average transmittance is 91.9%. At last, the absorption property is very well in the infrared region. The infrared absorption coefficient is greater than 0.69/μm in range of 3–5 μm, and it is up to 1.433528/μm in 8–14 μm because of its many strong infrared absorption peaks. In addition, the absorption characteristics have been analyzed in detail.  相似文献   

11.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

12.
A novel and effective process to fabricate high quality fluoride thin films was presented. Aluminum fluoride films deposited by a conventional thermal evaporation with an ion-assisted deposition (IAD) using SF6 as a working gas at around room temperature were investigated. In this study, the optimal voltage and current, 50 V and 0.25 A, were found according to the optical properties of the films: high refractive index (1.489 at 193 nm), low optical absorption and extinction coefficient (<10−4 at 193 nm) in the UV range. The physical properties of the film are high packing density and amorphous without columnar structure. It was proved that using SF6 working gas in IAD process is a good choice and significantly improves the quality of AlF3 films.  相似文献   

13.
In the present paper, we investigate the origin of photoluminescence (PL) and the changes in the optical properties: refractive index and absorption coefficient, in poly(p-cresolformaldeyde) and diazonaphtoquinone thin films irradiated with Xe ions. Films 400 nm thick have been irradiated with 800 keV Xe2+ ions in a fluence range from 1013 to 6 × 1015 Xe cm−2. The structural modifications were followed by the techniques of nuclear reaction analysis, elastic recoil detection analysis, Rutherford backscattering, Fourier transform infrared and Raman spectroscopies. The PL behavior was characterised with 488 nm excitation wavelength. The pristine films show emission with maxima of the main bands located at 635, 720 and 830 nm. For fluences up to 1014 Xe cm−2, the photoluminescence intensity increases with the irradiation fluence. The chain mobility lowering, characterized by the crosslinked structure, explains this behavior in organic systems. Other possible contribution for increasing of PL intensity, at these fluences, is the presence of oxygen trapped in the polymer chains by the dangling bonds. At intermediate and higher fluences, the photoluminescence starts to decrease. At fluences higher than 1014 Xe cm−2, irreversible changes of the organic structure occur and they are characterized by large losses of oxygen and hydrogen, transforming the material into amorphous carbon films. The loss of photoluminescent behavior is associated with the light absorption characteristics of the amorphous carbon structure. This conclusion is supported by the observed increase of the refractive indexes and absorption coefficients, obtained in the infrared region, as well as by the Raman results. Also, the effect of irradiation modifying the refractive index in the infrared region suggests the application of these films as waveguide in this region of wavelength.  相似文献   

14.
The optical nonlinearity of styryl7 dye in ethanol solution at different concentrations has been studied using pulsed Nd:YAG laser at 532 nm as the source of excitation. The optical responses were characterized by measuring the intensity dependent refractive index (n2) of the medium using the Z-scan technique. The open aperture Z-scan trace of the dye in solution displayed saturable absorption. The closed aperture Z-scan trace of the dye exhibited a negative nonlinearity. The styryl7 dye at 1 mM concentration exhibited nonlinear refractive co-efficient n2 = −1.24 × 10−8 cm2/W, nonlinear absorption coefficient β = − 3.9 × 10−4 cm/W and real and imaginary parts of third-order nonlinear optical susceptibility χ3 = 3.26 × 10−6 esu in ethanol. These results showed that the dye has potential application in nonlinear optics.  相似文献   

15.
An investigation of third-order nonlinear optical characterization of newly synthesized conjugated benzodioxal derivatives has been done by using nanosecond Z-scan technique at 532 nm. The molecules demonstrate self-defocusing effect with intensity dependent refractive index (n2) of the order of 10−14 cm2/W. The measured molecular TPA cross-section is ranging from 2.47 ×10−47 cm4 s/photon to 6.00 cm4 s/photon. Their input-output curves indicate that there is a clear optical power limiting behavior with the limiting threshold in the range 125-181 μJ. The main factor to exhibit the observed nonlinearity in these molecules is the presence of charge donor and acceptor groups. The increased conjugation length increases the nonlinear refraction and increased electron density enhances the nonlinear absorption. The molecules exhibit good nonlinear optical properties, comparable to those of regular azoaromatic compounds. Therefore, the molecules investigated here are promising candidates for optical power limiting devices.  相似文献   

16.
The molecular charge complex urea picrate (UP) was synthesized and its third order nonlinear optical properties have been investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. Open aperture data of the compound indicates two photon absorption at this wavelength. The nonlinear refractive index n2, nonlinear absorption coefficient β, magnitude of effective third order susceptibility χ(3), the second order hyperpolarizability γh and the coupling factor ρ have been estimated. The experimentally determined values of β, n2, Re χ(3) and Im χ(3), γh and ρ of the compound UP are 2.146 cm/GW, −1.258×10−11 esu, −1.347×10−13 esu, 0.377×10−13 esu, 0.69×10−32 esu and 0.28, respectively. The compound exhibits good optical limiting at 532 nm with the limiting threshold of 80 μJ/pulse. Our studies suggest that compound UP is a potential candidate for optical device applications such as optical limiters.  相似文献   

17.
Optical properties of solid methane (CH4) were studied at high pressure and room temperature using a diamond anvil cell. Reflectivity and transmission measurements were used to measure the refractive index to 288 GPa. Fabry-Perot interferometery was used to measure the sample thickness to 172 GPa. This data was fitted to the derived expression of thickness vs. pressure that was then used to calculate the thickness to 288 GPa. This in turn was combined with optical absorption experiments to obtain the absorption coefficient and hence the extinction coefficient k*. From combined reflection and absorption experiments the refractive index n=ns+ik* was obtained. The index of refraction and the ratio of molar refraction to molar volume showed a large increase between 208 and 288 GPa. This behavior indicated that a phase transformation of insulator-semiconductor might have occurred in solid CH4 by 288 GPa.  相似文献   

18.
In this work, nonlinear refraction properties of 3 nm sized silver sulfide (Ag2S) semiconductor nanocrystals dispersed in the dimethyl sulfoxide with varying concentrations are reported. Observation of the colloids far-field diffraction ring patterns indicates of large induced thermal nonlinear refraction in the medium. The thermally induced effective nonlinear refractive index due to nonlocal heat effect is characterized by Z-scan technique with a low power CW laser irradiation at 532 nm. This allows us to measure thermo-optic coefficient and effective nonlinear refractive index up to −1.52 × 10−7 cm2/W in the tested samples. Low power optical limiting, with low limiting thresholds is obtained in the samples based on thermal defocusing and self diffraction. The limiting thresholds of colloids at different Ag2S nanocrystals concentrations are also reported.  相似文献   

19.
The third order nonlinear optical properties of acid blue 29 solutions have been studied using Z-scan technique. Experiments are performed using a CW He–Ne laser at 632.8 nm wavelength and 3 mW power. The linear absorption coefficient α0, nonlinear absorption coefficient β, nonlinear refractive index n2, Re χ3, and Im χ3 are measured at three different concentrations. Our results show that higher concentration gives better nonlinear optical properties. Also, it was found that there is an increasing trend in the value of the nonlinear refractive index n2 as the concentration increases.  相似文献   

20.
We present a simple method to measure the refractive index dispersion over a broad wavelength range (0.6-1.6 μm). In a first step, the optical group indices are obtained by measuring the time-retardation of tunable 150 fs laser pulses within a sample relative to air. The refractive index dispersion is then calculated using a Sellmeier equation that describes the measured group index dispersion. We show that our experimental data agree with previously published results to within 2 × 10−4 for a 3 mm thick sample of fused silica and to within 3 × 10−3 for the index n1 of a 2 mm thick crystal of the highly dispersive and anisotropic organic crystal 4-N,N-dimethylamino-4′-N′-methyl stilbazolium tosylate (DAST).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号