首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
The surface properties of boron-doped nanocrystalline diamond films treated with H2 plasma was investigated in regard to their electrochemical response for phenol oxidation. The surface of these films is relatively flat formed by crystallites with sizes of about 40 nm. X-ray photoelectron spectroscopy analyses showed that electrode surface has a high amount of C–H bonds. This behavior is in agreement with Mott-Schottky plot measurements concerning the flat band potential that presented a value as expected for hydrogenated diamond surface. This electrode presented the phenol detection limit of 0.08 mg L−1 for low phenol concentrations from 40 to 250 μmol L−1.  相似文献   

2.
This work describes the application of time resolved fluorescence in microtiterplates and electrochemical methods on glassy carbon electrode for investigating the interactions of europium-3-carboxycoumarin with pesticides aldicarb, methomyl and prometryne. Stern-volmer studies at different temperatures indicate that static quenching dominates for methomyl, aldicarb and prometryne. By using Lineweaver-Burk equation binding constants were determined at 303 K, 308 K and 313 K. A thermodynamic analysis showed that the reaction is spontaneous with ΔG being negative. The enthalpy ΔH and the entropy ΔS of reactions were all determined. A time-resolved (gated) luminescence-based method for determination of pesticides in microtiterplate format using the long-lived europium-3-carboxycoumarin has been developed. The limit of detection is 4.80, 5.06 and 8.01 μmol L−1 for methomyl, prometryne and aldicarb, respectively. This is the lowest limit of detection achieved so far for luminescent lanthanide-based probes for pesticides. The interaction of the probe with the pesticides has been investigated using cyclic voltammetry (CV), differential pulse polarography (DPP), square wave voltammetry (SWV) and linear sweep voltammetry (LSV) on a glassy carbon electrode in I = 0.1 mol L−1 p-toluenesulfonate at 25 °C. The diffusion coefficients of the reduced species are calculated. The main properties of the electrode reaction occurring in a finite diffusion space are the quasireversible maximum and the splitting of the net SWV peak for Eu(III) ions in the ternary complex formed . It was observed that the increase of the cathodic peak currents using LSV is linear with the increase of pesticides concentration in the range 5 × 10−7 to 1 × 10−5 mol L−1. The detection limit (DL) were about 1.01, 2.23 and 1.89 μmolL−1 for aldicarb, methomyl and prometryne, respectively. In order to assess the analytical applicability of the method, the influence of various potentially interfering species was examined. Influence of interfering species on the recovery of 10 μmol L−1 pesticides has been investigated.  相似文献   

3.
A new, simple, sensitive and selective spectrofluorimetric method for the determination of Hydrochlorothiazide was developed in acetonitrile at pH 6.2. The Hydrochlorothiazide can remarkably enhance the luminescence intensity of the Tb3+ ion doped in sol–gel matrix at λex = 370 nm. The intensity of the emission band of Tb3+ ion doped in sol–gel matrix was increased due to the energy transfer from the triplet excited state of Hydrochlorothiazide to (5D4) excited energy state of Tb3 ion. The enhancement of the emission band of Tb3+ ion doped in sol–gel matrix at (5D47 F5) 545 nm was directly proportion to the concentration of Hydrochlorothiazide with a dynamic ranges of 5.0 × 10−10—5.0 × 10−6 mol L−1 and detection limit of 2.2 × 10−11 mol L−1.  相似文献   

4.
The manganese oxide/multi-walled carbon nanotube (MnO2/MWNT) composite and the manganese oxide/acetylene black (MnO2/AB) composite were prepared by translating potassium permanganate into MnO2 which formed the above composite with residual carbon material using the redox deposition method and carbon as a reducer. The products were characterized by X-ray diffraction, Fourier transform infrared, and scanning electron microscope. Electrochemical properties of both the MnO2/MWNT and MnO2/AB electrodes were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the MnO2/MWNT electrode has better electrochemical capacitance performance than the MnO2/AB electrode. The charge–discharge test showed the specific capacitance of 182.3 F·g−1 for the MnO2/MWNT electrode, and the specific capacitance of 127.2 F·g−1 for the MnO2/AB electrode had obtained, within potential range of 0–1 V at a charge/discharge current density of 200 mA·g−1 in 0.5 mol·L−1 potassium sulfate electrolyte solution in the first cycle. The specific capacitance of both the MnO2/MWNT and MnO2/AB electrodes were 141.2 F·g−1 and 78.5 F·g−1 after 1,200 cycles, respectively. The MnO2/MWNT electrode has better cycling performance. The effect of different morphologies was investigated for both MnO2/MWNT and MnO2/AB composites.  相似文献   

5.
The efficiency of excited-state interaction between Tb3+ and the industrial product Cilostazol (CIL) has been studied in different solvents. High luminescence intensity peak at 545 nm of terbium complex in acetonitrile was obtained. The photophysical properties of the green emissive Tb3+ complex have been elucidated, the terbium was used as optical sensor for the assessment of CIL in the pharmaceutical tablets and body fluids at pH 3.1 and λex = 320 nm with a concentration range 1.0 × 10−9–1.0 × 10−6 mol L−1 of CIL, correlation coefficient of 0.998 and detection limit of 7.5 × 10−10 mol L−1.  相似文献   

6.
The present work reports on the synthesis, characterization and performance of a new metal-containing ionic liquid [(C3H7)2-bim]2[CdCl4] (bim = benzimidazole) as an electrocatalyst for trichloroacetic acid (TCA) and bromate reduction. The structure of Cd(II)-containing ionic liquid (Cd-IL) was characterized by X-ray crystallography, IR spectroscopy, and elemental analysis. The molecular structure contains two independent cations of 1,3-dipropyl-benzimidazolium and one anion of CdCl42−. The cadmium atom has a tetrahedral geometry by coordinating to four chlorine atoms. The melting point of Cd-IL is 73 °C. Electrochemical properties of the Cd-IL have been investigated by preparing bulk-modified carbon paste electrode, and Cd-IL is used as a binder and an electrocatalyst. This modified electrode has good electrocatalytic activity toward reduction of TCA and bromate. The detection limit and the sensitivity are 0.01 μM and 102.72 μA μM−1 for trichloroacetic acid detection and 0.003 μM and 496.15 μA μM−1 for bromate detection. This work demonstrates that the Cd-IL may become a new kind of functional material in constructing chemicals and biosensors.  相似文献   

7.
In this paper, an amperometric electrochemical biosensor for the detection of hydrogen peroxide (H2O2), based on gold nanoparticles (GNPs)/thionine (Thi)/GNPs/multi-walled carbon nanotubes (MWCNTs)-chitosans (Chits) composite film was developed. MWCNTs-Chits homogeneous composite was first dispersed in acetic acid solution and then the GNPs were in situ synthesized at the composite. The mixture was dripped on the glassy carbon electrode (GCE) and then the Thi was deposited by electropolymerization by Au-S or Au-N covalent bond effect and electrostatic adsorption effect as an electron transfer mediator. Finally, the mixture of GNPs and horseradish peroxidase (HRP) was assembled onto the modified electrode by covalent bond. The electrochemical behavior of the modified electrode was investigated by scanning electron microscope, cyclic voltammetry and chronoamperometry. This study introduces the in situ-synthesized GNPs on the other surface of the modified materials in H2O2 detection. The linear response range of the biosensor to H2O2 concentration was from 5 × 10−7 mol L−1 to 1.5 × 10−3 mol L−1 with a detection limit of 3.75 × 10−8 mol L−1 (based on S/N = 3).  相似文献   

8.
In the paper, a chemiluminescence (CL) system was developed based on the catalytical effect of diperiodatocuprate (III) (DPC) on the 1,10-phenanthroline (phen)/hydrogen peroxide (H2O2) in the presence of cetyltrimethylammonium bromide (CTAB). The effects of experimental conditions were investigated. Meanwhile the increase of CL intensity of the DPC/phen/H2O2/CTAB system is proportional to the concentration of phen in the range of low concentration. The linear range of the calibration curve is 5.0 × 10−9–1.0 × 10−6 mol L−1, and the corresponding detection limit is 1.9 × 10−9 mol L−1. The effects of phenolic compounds (PCs) on the system were investigated. Hydroquinone was used as an example to investigate the application of the CL system to the determination of PCs. The quenched CL intensity is linearly related to the logarithm of concentration of hydroquinone. The linear range of the calibration curve is 2.5 × 10−9–1.0 × 10−5 g mL−1, and the corresponding detection limit is 1.8 × 10−9 g mL−1. This phen and hydroquinone can be synchronously determined. The method was applied to the determination of hydroquinone in water samples and the recoveries were from 92% to 106%.  相似文献   

9.
A coumarin-based fluorescent chemosensor 1 for Zn2+ was designed and synthesized. Compound 1 exhibits lower background fluorescence due to intramolecular photoinduced electron transfer. However, upon mixing with Zn2+ in 30% (v/v) aqueous ethanol, a “turn-on” fluorescence emission is observed. The fluorescence emission increases linearly with Zn2+ concentration in the range 0.5–10 μmol L−1 with a detection limit of 0.29 μmol L−1. No remarkable emission enhancement was, however, observed for other metal ions. The proposed chemosensor was applied to the determination of Zn2+ in water samples with satisfactory results.  相似文献   

10.
A detailed derivation is presented for relations making it possible to describe the effect of temperature on the halfwidth of the P960 and P870 absorption bands and also on the electron transfer (ET) rate at reaction centers (RCs) of the purple bacteria Rps. viridis and Rb. sphaeroides. Primary electron transfer is considered as a resonant nonradiative transition between P* and P+B L states (where P is a special pair, BL is an additional bacteriochlorophyll in the L branch of the reaction center). It has been shown that the vibrational hα mode with frequency 130–150 cm−1 controls primary electron transfer. It has been found that the matrix element of the electronic transition between the states P* and P+B L is equal to 12.7 ± 0.9 and 12.0 ± 1.2 cm−1 for Rps. viridis and Rb. sphaeroides respectively. The mechanism is discussed for electron transport from P* and BL and then to bacteriopheophytin HL. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 3, pp. 294–303, May–June, 2006.  相似文献   

11.
The chaperonin protein GroEL was mixed with varying concentrations of K2PtCl4 followed by a 20-fold concentration of sodium borohydride to afford GroEL–platinum nanoparticle complexes in a ratio of between 1:25 and 1:2,000. Typical colour change, from colourless or pale yellow to brown, occurred that was dependent on the amount of platinum present. These complexes were characterised by UV/Vis, inductively coupled plasma optical emission spectroscopy, Fourier transform infra red, transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy. TEM analysis revealed that the size of nanoparticles increased as the molar ratio of platinum to GroEL increased with an average size diameter of 1.72–3.5 nm generated with GroEL–platinum molar ratios of 1:125–1:2,000. Fourier-transform infrared spectroscopy (FTIR) spectra showed no distinct changes in the structure of GroEL but confirmed that the nanoparticles were attached to the protein. The effect of platinum nanoparticles on the ATPase activity of GroEL showed an activity of 5.60 μmol min−1 ml−1 (87 % increase over a control) at the molar ratio of GroEL–platinum nanoparticles of 1:25.  相似文献   

12.
It was first found that the intrinsic fluorescence of lysozyme at 340 nm can be quenched by cephalosporin analogues through the static quenching and non-radiative energy transferring procedure. In the acetate buffer solution with pH 7.0 and 298 K, the quenching fluorescence intensity was in a good linearity over the concentration of drugs in the range of 1–100 μmol L−1, 0.1–100 μmol L−1, 0.5–100 μmol L−1 and 0.05–100 μmol L−1 for cefradine, cefuroxime, cefotaxime and ceftriaxone, respectively. The quenching ability or the binding ability of the studied drugs followed the pattern: ceftriaxone > cefotaxime > cefuroxime > cefradine, which was close to the order of their antibacterial ability. The binding parameters including the association constant and the number of binding potential point were calculated at different temperatures (288, 298 and 308 K), and thermodynamic parameters ΔH°, ΔS° and ΔG° were given. The binding mode of lysozyme with cephalosporins showed that the hydrophobic effect might play a major role. The binding distance between cephalosporin and tryptophan residue in lysozyme was obtained. The results provided the quantitative information for the binding of cephalosporin to lysozyme, and it was suggested that the drugs probably bound to the active site near Trp62 in lysozyme.  相似文献   

13.
A nanoparticle TiO2 solid-state photoelectrochemical cell utilizing as a solid electrolyte of poly(acrylonitrile)–propylene–carbonate–lithium perchlorate (PAN–PC–LiClO4) has been fabricated. The performance of the device has been tested in the dark and under illumination of 100-mW cm−2 light. A nanoparticle TiO2 film was deposited onto indium tin oxide-covered glass substrate by controlled hydrolysis technique assisted with spin-coating technique. The average grain size for the TiO2 film is 76 nm. LiClO4 salt was used as a redox couple. The room temperature conductivity of the electrolyte is 4.2 × 10−4 S cm−1. A graphite electrode was prepared onto a glass slide by electron beam evaporation technique. The device shows the rectification property in the dark and shows the photovoltaic effect under illumination. The best J sc and V oc of the device were 2.82 μA cm−2 and V oc of 0.58 V, respectively, obtained at the conductivity of 4.2 × 10−4 S cm−1 and intensity of 100 mW cm−2. The J sc was improved by about three times by introducing nanoparticle TiO2 and by using a solid electrolyte of PAN–PC–LiClO4 replacing PVC–PC–LiClO4 in the device. The current transport mechanism of the cell is also presented in this paper.  相似文献   

14.
Manganese dioxides were fabricated by electrodeposition from MnCl2, MgCl2/MnCl2, and HCl/MnCl2 aqueous solutions at 100 °C, respectively. Oxidation behaviors of Mn(II) on titanium plate were studied by cyclic voltammetry. X-ray diffractometer, scanning electron microscopy, and BET measurements were used to characterize manganese dioxide crystal structures, micromorphologies, and specific surface area. The effects of electrolyte composition and potential on manganese dioxide crystal structure and micromorphology were investigated. Manganese dioxide structure type and micromorphology were controlled by adjusting electrolyte composition. γ-MnO2 aggregates consisting of nanosheets were electrodeposited from 0.05 mol L−1 MnCl2 aqueous solution. Crystallinity and the size of γ-MnO2 nanosheet were increased by adding Mg(II) into electrolyte. Nanosized rod-like α-MnO2 with higher specific surface area was prepared by adding 2.0 mol L−1 hydrochloric acid into manganese chloride solution.  相似文献   

15.
Bi2S3 nanotubes and de-doped poly(3,4-ethylenedioxythiophene) (PEDOT) composite nanopowders were synchronously synthesized by a one-pot self-assembly method. The powders were characterized by X-ray powder diffraction, infrared spectroscopy, and transmission electron microscopy, respectively. Thermoelectric properties of the Bi2S3–PEDOT composite nanopowders with different Bi2S3 contents after being cold pressed into pellets were measured at room temperature. The sample with 36.1 wt% Bi2S3 has a highest power factor of 2.3 μWm−1K−2, which is higher than that of both pure PEDOT (0.445 μWm−1K−2) and Bi2S3 (1.94 μWm−1K−2).  相似文献   

16.
Water-soluble Mn2+-doped ZnS quantum dots (QDs) were prepared using mercaptoacetic acid as the stabilizer. The optical properties and structure features were characterized by X-Ray, absorption spectrum, IR spectrum and fluorescence spectrum. In pH 7.8 Tris-HCl buffer, the QDs emitted strong fluorescence peaked at 590 nm with excitation wavelength at 300 nm. The presence of sulfide anion resulted in the quenching of fluorescence and the intensity decrease was proportional to the S2− concentration. The linear range was from 2.5 × 10−6 to 3.8 × 10−5 mol L−1 with detection limit as 1.5 × 10−7 mol L−1. Most anions such as F, Cl, Br, I, CH3CO2 , ClO4 , CO3 2−, NO2 , NO3 , S2O3 2−, SO3 2− and SO4 2− did not interfere with the determination. Thus a highly selective assay was proposed and applied to the determination of S2− in discharged water with the recovery of ca. 103%.  相似文献   

17.
The specific heats of liquid Ti–20at.%Al and Ti–51at.%Al alloys are determined to be 33.01±2.75 and 31.27±2.91 J mol−1 K−1 in the stable superheated and metastable undercooled states by using an electromagnetic levitation drop calorimeter. The experimental temperature ranges are 1733–2133 K and 1511–1948 K, and maximum undercoolings of 230 (0.12 T L) and 242 K (0.14 T L) are achieved, respectively. On the basis of the experimental results, the specific heat dependence on the composition is obtained for binary Ti–Al alloys.  相似文献   

18.
Artemisinin regarded as one of the most promising anticancer drugs can bind to DNA with a binding constant of 1.04 × 104 M−1. The electrochemical experiments indicated that for longer incubation time periods, the reduction peak current of artemisinin on carbon nanotube modified electrode increases. Therefore, the uptake of drug molecules from a solution into CNTs will be achieved automatically by adsorption of 88.7% of artemisinin onto carbon nanotubes surface without alteration in drug properties. Hence, capability of carbon nanotubes to have synergistic effect on the bioavailability of artemisinin was investigated. Experimental tests on K562 cancer cell lines growth by MTT assay proved that multi-walled carbon nanotubes can enhance the cytotoxity of artemisinin to the targeted cancer cells with unprecedented accuracy and efficiency. The IC50 values were 65 and 35 μM for artemisinin and artemisinin loaded on multi-walled carbon nanotubes, respectively; demonstrating that artemisinin loaded on multi-walled carbon nanotubes is more effective in inhibition of cancer cell lines growth.  相似文献   

19.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

20.
Fine and uniform La0.6Sr0.4Co0.2Fe0.8O3−δ powder was synthesized by a glycine–nitrate combustion process. La0.6Sr0.4Co0.2Fe0.8O3−δ electrodes were prepared on dense Ce0.8Sm0.2O2−δ electrolyte substrates using a spin-coating technique by sintering at 900–1,000 °C. The electrode properties of La0.6Sr0.4Co0.2Fe0.8O3−δ were investigated by electrochemical impedance spectroscopy and chronopotentiometry techniques with respect to preparation conditions and the resulting microstructures. The results indicate a significant effect of the microstructure on the electrode processes and polarization characteristics. The oxygen adsorption and dissociation process acted as a larger contribution to the overall electrode polarization R p in magnitude compared with the charge transfer process due to relatively low porosity levels of the electrodes. It was detected that the grain size of the electrodes exhibited a crucial role on the electrocatalytic reactivity. At 800 °C, the electrode sintered at 950 °C attained a polarization resistance of 0.18 Ω cm2, an overpotential of 27 mV at a current density of 200 mA cm−2, and an exchange current density of 308 mA cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号