首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new copper(II) complexes with isonicotinic acid N-oxide (HL) and 1,10-phenanthroline (phen) as ligands, [Cu(L)(phen)(H2O)]2(NO3)2···2H2O (1), [Cu(L)(phen)(H2O)]2(ClO4)2···2H2O (2), and [Cu(L)(phen)Br]2- [Cu(L)(phen)(H2O)]2Br2···6H2O (3) have been synthesized and structurally characterized. The structures of all three complexes feature a Cu2 dimer formed by two Cu(II) ions interconnected by two bridging ligands. Each copper(II) ion has a distorted square pyramidal coordination geometry with elongated axial coordination by an aqua ligand or halogen anion. The isonicotinic acid N-oxide anion is bidentate, being coordinated to two Cu(II) ions through its N-O oxygen and one of its carboxylate oxygen atoms. Magnetic susceptibility measurements show a Curie–Weiss paramagnetic behavior characteristic of one unpaired electron for a copper(II) ion for all three complexes.  相似文献   

2.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

3.
Thiosemicarbazone derivatives are formed on reaction between acetophenone, salicylaldehyde, benzophenone and/or 2-hydroxy-4-methoxybenzophenone and thiosemicarbazide or its N4H substituents (ethyl-, phenyl-, and p-chlorophenyl-). The ligands were investigated by elemental analysis and spectral (IR, 1H?NMR and MS) studies. The formulas of the prepared complexes have been suggested by elemental analyses and confirmed by mass spectra. The coordination sites of each ligand were elucidated using IR spectra revealing bidentate and tridentate coordination. Different geometries for the complexes were proposed on the basis of electronic spectra and magnetic measurements. The complexes have been analyzed thermally (TG and DTG) and the kinetic parameters for some of their degradation steps were calculated.  相似文献   

4.
Abstract

A family of five palladium(II) 2-(arylazo)naphtholate complexes, [PdCl(PPh3)(L)] (L?=?O, N-donor of bidentate 2-(arylazo)naphtholate ligands), have been synthesized and characterized by elemental analysis and spectral (FT-IR, UV–Vis, 1H-NMR and 13C-NMR) methods. Further, the catalytic efficiency of all the complexes have been investigated for Suzuki and Sonogashira coupling reaction of various aryl halides.  相似文献   

5.
Two new lead(II) complexes containing nitrite, [Pb(L)2(NO2)2], L?=?1,10-phenanthroline (phen) or 2,2′-bipyridine (bpy), have been synthesized and characterized. The crystal structure of [Pb(phen)2(NO2)2] shows monomeric units. The coordination number is eight (four from “phen” ligands and four nitrite anions), weak interaction of lead(II) with oxygen atoms of adjacent molecules produce dimer units in the solid state. The arrangement of ligands exhibits a coordination hole around the lead(II), occupied possibly by a stereoactive lone pair of electrons on lead(II), and the coordination around lead is hemidirected. There is a π–π stacking interaction between the parallel aromatic rings that may help to increase the “gap” around lead(II).  相似文献   

6.
A novel ligand dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline (dpoq) and its complexes [Ru(bpy)2(dpoq)]2+ and [Ru(phen)2(dpoq)]2+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, thermal denaturation and viscosity measurements. Results suggest that two Ru(II) complexes bind to DNA via an intercalative mode.  相似文献   

7.
Two bidentate Schiff bases, 5-methyl-2-p-tolyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L1) and 2-(3-chloro-phenyl)-5-methyl-4-(1-p-tolylimino-propyl)-2H-pyrazol-3-ol (L2), were synthesized by condensation of 4-acyl pyrazolones with p-toluidine in ethanol. These ligands have been characterized by elemental analysis, infrared (IR), 1H NMR, and mass spectra. A single crystal molecular structure of ligand L2 was also solved. Nickel(II) complexes of these ligands with general formula [ML2?·?2H2O] have been prepared by the interaction of aqueous solution of Ni-acetate with ethanolic solution of the appropriate ligand. The complexes were separated, analyzed, and their structures were elucidated on the basis of elemental analysis, Ni(II) determination, IR, UV-Vis, conductance, mass, and TGA-DTA data. Octahedral structure was proposed for the synthesized complexes.  相似文献   

8.
Abstract

The ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ (where M is the same and M = FeII or NiII, phen = 1,10-phenanthroline, DIP = 4,7-diphenyl-1,10-phenanthroline) has been investigated by reversed phase ion-paired chromatography (RP-IPC). The effect of pH and solvent on the ligand-exchange reaction is studied by monitoring the variation in chromatograms with time after mixing. The results have shown that the ligand exchange reaction between [M(phen)3]2+ and [M(DIP)3]2+ takes place in the pH range of 3–8 and the rate of reaction for nickel(II) complexes is about two times slower than that for iron(II) complexes. Experiments on the effect of various solvents on the ligand-exchange reaction have revealed that the rate of reaction is enhanced by the solvent in the following order: (CH3)2CO > CHCl3 ≥ CH2Cl2 > CH3CN > CH3OH. Elemental analysis and UV-visible spectroscopy confirmed that the products obtained from the ligand-exchange reaction are mixed-ligand complexes containing phen and DIP ligands, i.e., [M(phen)2(DIP)]2+ and [M(phen)(DIP)2]2+.  相似文献   

9.
Eight mononuclear complexes of the formula [M(N-N)(DHB)] and two binuclear complexes of the formula [M2(BPY)2(THB)] where M = Pd(II) or Pt(II), N-N = 2,2′-bipyridine (BPY), 2,2′-biquinoline (BIQ), 4,7-diphenyl-1,10-phenanthroline (DPP), 1,10-phenanthroline (PHEN); DHB = dianion of 3,4-dihydroxybenzaldehyde and THB = tetraanion of 3,3′,4,4′-tetrahydroxy benzaldazine were prepared and their electrochemical, spectral and photophysical properties were examined. These complexes were characterized by chemical analysis, IR and proton NMR spectroscopy. A detailed study on the absorption spectroscopy of these complexes was made. These complexes were found to show a low-energy solvatochromic ligand-to-ligand charge-transfer (LLCT) band. The electronic energies of these bands have been analyzed and compared with electrochemical data. Emission behaviour of the complexes of the series, [Pt(N-N)(DHB)], [Pt(N-N)(DHBA)] where DHBA is the dianion of 3,4-dihydroxybenzoic acid and [Pt2(BPY)2(THB)] was also investigated. These platinum complexes were found to emit from a low-energy state at low temperature and a high-energy state at room temperature. Photophysics of these complexes is also discussed.  相似文献   

10.
Two types of dinuclear copper(II) and nickel(II) complexes with two tetradentate N2O2 donor ligands 1,4-bis(1-anthranoylhydrazonoethyl)benzene (L1), 1,4-bis(1-salicyloylhydrazonoethyl)benzene (L2) and N,N'-bidentate heterocyclic base [1,10-phenonthroline (phen)] have been synthesized and characterized by elemental analysis, infrared spectra, UV-vis electronic absorption spectra and magnetic susceptibility measurements. The reaction of metal(II) acetates with the solution containing ligand and 1,10-phenonthroline in methanol gives mixed-ligand dinuclear metal(II) complexes with general formula [M2L(phen)2]Cl2 (L=L1 or L2), whereas, the ligands react with metal(II) acetates to form polymeric dinuclear complexes with general formula [(M2L2)n] (L=L1 or L2). In the complexes, the ligands act as dianionic tetradentate and coordination takes place in the enol tautomeric form with the enolic oxygen and azomethine nitrogen atoms while the phenolic hydroxyl and amino groups of aroylhydrazone moiety do not participate in coordination. The effect of varying pH and solvent on the absorption behavior of both ligands and complexes has been investigated.  相似文献   

11.
Two polypyridyl ligands 6-fluro-3-(1H-imidazo [4,5-f] [1,10]-phenanthroline-2-yl)-4H-chromen-4-one (FIPC), 6-chloro-3-(1H-imidazo [4,5-f] [1,10]-phenanthroline-2-yl)-4H-chromen-4-one (ClIPC) polypyridyl ligands and their Ru(II) complexes [Ru(bipy)2FIPC]2+(1), [Ru(dmb)2FIPC]2+(2), [Ru(phen)2FIPC]2+(3), [Ru(bipy)2ClIPC]2+(4), [Ru(dmb)2ClIPC]2+(5) and [Ru(phen)2ClIPC]2+(6) ((bipy = 2,2′-bipyridine, dmb = 4,4′-dimethyl-2,2′-bipyridine and phen = 1,10-phenanthroline) have been synthesised and characterised by elemental analysis, Mass spectra, IR, 1H and 13C-NMR. The DNA-binding of the six complexes to calf-thymus DNA (CT-DNA) has been investigated by different spectrophotometric, fluorescence and viscosity measurements. The results suggest that 1–6 complexes bind to CT-DNA through intercalation. The variation in binding affinities of these complexes is rationalised by a consideration of electrostatic, steric factors and nature of ancillary ligands. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR 322 DNA. Inhibitor studies suggest that singlet oxygen (1O2) plays a significant role in the cleavage mechanism of Ru(II) complexes. Thereby, under comparable experimental conditions [Ru(phen)2FIPC]2+(3), [Ru(phen)2ClIPC]2+(6) cleaves DNA more effectively than 1, 2, 4 and 5 complexes do. The Ru(II) polypyridyl complexes (1–6) have been screened for antimicrobial activities.  相似文献   

12.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

13.
Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L(1)) and semicarbazone (L(2)) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L)(2)(SO(4)) and Cu(L)(2)(SO(4)) [where L=L(1) and L(2)] which are of five coordinated square pyramidal geometry.  相似文献   

14.
Nickel(II) and copper(II) complexes are synthesized with a novel tetradentate macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza;3,5,13,15-tetraphenyltricyclo[15,3,1,1(7-11)] docosa;1(21),2,5,7,9,11(22),12,15,17,19-decaene (L) and characterized by the elemental analysis, magnetic susceptibility measurements, mass, (1)H NMR, IR, electronic and EPR spectral studies. All the complexes are non-electrolytic in nature. Thus, these may be formulated as [M(L)X(2)] [M=Ni(II), Cu(II) and X=Cl(-), NO(3)(-) and (1/2)SO(4)(2-)]. Ni(II) and Cu(II) complexes show magnetic moments corresponding to two and one unpaired electron, respectively. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Ni(II) and tetragonal geometry for Cu(II) complexes.  相似文献   

15.
A series of new complexes of oxovanadium(IV) [VO(L)(B)] and ruthenium(II) [Ru(CO)(PPh3)2(L)] ( 1.1- 1.3,  2.1–2.3 ) (H2L = dehydroacetic acid Schiff base of S‐methyldithiocarbazate, H2smdha ( 1 ) or S‐benzyldithiocarbazate, H2sbdha ( 2 ); B = 2,2′‐bipyridine (bpy) or 1,10‐phenanthroline (phen)) have been synthesized. The structure of these complexes was authenticated using elemental analyses and spectroscopic techniques, and their magnetic properties and electrochemical behaviour were studied. The molecular structures of oxovanadium(IV) complexes [VO(smdha)(bpy)]?CH2Cl2 ( 1.1 ) and [VO(sbdha)(phen)]?2H2O ( 2.2 ) were confirmed using single‐crystal X‐ray crystallography. Analytical data showed that the ligands 1 and 2 are chelated to the metal centres in a bi‐negative tridentate fashion through azomethine N, thiol S and deprotonated hydroxyl group. The antioxidant activity of the synthesized compounds was tested against 2,2‐diphenyl‐1‐picrylhydrazyl) radical, which showed that the complexes demonstrate a better scavenging activity than their corresponding ligands. The cupric ion reducing antioxidant capacity method was also employed and the total equivalent antioxidant capacity values were found to be higher for the oxovandium(IV) complexes. DNA binding affinity of the compounds was determined using UV–visible and fluorescence spectra, revealing an intercalation binding mode. Higher cytotoxicity for the complexes compared to their ligands was found against human liver hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF7) cell lines using MTT assay.  相似文献   

16.
Three new binudear cobalt (II) complexes with extended te-tracarboxylato- bridge have been synthesized and characterized, namely [Co2 (PMTA) (bpy)4] (1), [Co2(PMTA)-(phen)4] (2) and [Co2(PMTA) (NO2phen)4] (3), where PMTA represents the tetraanion of pyroniellitic acid, and bpy, phen, NO2-phen denote 2,2'-bipyridine, 1,10-phenan-throline; 5-nirto-1, 10-plienanthroline, respectively. Based on elemental analyses, molar conductivity measurements, IR and electronic spectra studies, it is proposed that these complexes have PMTA-bridged structures and consist of two cobalt (II) ions, each in a distorted octahedral environment. These complexes were further characterized by variable temperature magnetic susceptibility measurements (4-300 K) and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, giving the exchange integral J = - 1.02 cm-1 for 1, J = -1.21 cm-1 for 2 and J = - 1.18 cm-1 for 3, respectively. These results revealed the operation of antiferromagneti  相似文献   

17.
Four new copper (II)‐manganese (II) heterobinuclear complexes bridged byN, N'‐bis[2‐(dimethylamino)ethyl)]oxamido dianion (dmoxæ) and end‐capped with 1, 10‐phenanthroline (phen), 5‐methyl‐1, 10‐phenanthroline (Mephen), diaminoethane (en) or 1,3‐di‐aminopropane (pn). respectively, namely, [Cu(dmoxae)MnL2] (CIO4)2 (L=phen, Mephen, en, pn), have been synthesized and characterized by elemental analyses, IR, electronic spectral studies, and molar conductivity measurements. The electronic reflectance spectrum indicates the presence of spin exchange‐coupling interaction between bridged copper(II) and manganese (II) ions. The cryomagnetic measurements (4.2‐300 K) of [Cu(dmoxae)Mn(phen)2](CIO4)2 (1) and [Cu(dmoxae)Mn(Mephen)2](CIO4)2(2) complexes demonstrated an antiferromagnetic interaction between the adjacent manganese(II) and copper (II) ions through the oxamido‐bridge within each molecule. On the basis of spin Hamiltonian, H= ‐ 2JS1. S2. the magnetic analysis was carried out for the two complexes and the spin‐coupling constant (J) was evaluated as ?35.9 cm?1 for 1 and ‐ 32.6 cm?1 for 2. The influence of methyl substitutions in the amine groups of the bridging ligand on magnetic interactions between the metal ions of this kind of complexes is also discussed.  相似文献   

18.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

19.
Eight new platinum(II)/palladium(II) complexes with 4-toluenesulfonyl-L-amino acid dianion and diimine/diamine ligands, [Pd(en)(Tsile)]·H2O (1), [Pd(bipy)(Tsile)] (2), [Pd(bipy)(Tsthr)]·0.5H2O (3), [Pd(phen)(Tsile)]·0.5H2O (4), [Pd(phen)(Tsthr)]·H2O (5), [Pd(bqu)(Tsthr)]·1.5H2O (6), [Pt(en)(Tsser)] (7), and [Pt(en)(Tsphe)]·H2O (8), have been synthesized and characterized by elemental analyses, 1H NMR and mass spectrometry. The crystal structure of 7 has been determined by X-ray diffraction. Cytotoxicities were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. The complexes exert cytotoxicity against HL-60, Bel-7402, BGC-823, and KB cell lines with 4 having the best cytotoxicity against HL-60, Bel-7402, and BGC-823 cell lines; the compounds are less cytotoxic than cisplatin.  相似文献   

20.
Schiff base mixed-ligand copper complexes [CuL1(phen)Cl2], [CuL1(bipy)Cl2], [Cu(L1)2Cl2], [Cu(L2)2Cl2], [CuL2(bipy)Cl2], and [CuL2(phen)Cl2] (where L1?=?4-[3,4-dimethoxy-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; L2?=?4-[3-hydroxy-4-nitro-benzylidene]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazole-3-one; phen?=?1,10-phenanthroline; and bipy?=?2,2′-bipyridine) have been synthesized and characterized. Their DNA-binding properties have been studied by electronic absorption spectra, viscosity, and electrochemical measurements. The absorption spectral and viscosity results suggest that the copper(II) complexes bind to DNA via partial intercalation. The addition of DNA resulting in the decrease of the peak current of the copper(II) complexes indicates their interaction. Interaction between the complexes and DNA has also been investigated by submarine gel electrophoresis. The copper complexes cleave supercoiled pUC19 DNA to nicked and linear forms through hydroxyl radical and singlet oxygen in the presence of 3-mercaptopropionic acid as the reducing agent. These copper complexes promote the photocleavage of pUC19 DNA under irradiation at 360?nm. Mechanistic study reveals that singlet oxygen is likely to be the reactive species responsible for the cleavage of plasmid DNA by the synthesized complexes. The in vitro antimicrobial study indicates that the metal chelates have higher activity against the bacterial and fungal strains than the free ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号