首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

2.
The three diamagnetic square planar complexes of nickel(II), palladium(II), and platinum(II) containing two S,S-coordinated 3,5-di-tert-butylbenzene-1,2-dithiolate ligands, (L(Bu))(2-), namely [M(II)(L(Bu))(2)](2-), have been synthesized. The corresponding paramagnetic monoanions [M(II)(L(Bu))(L(Bu)(*))](-) (S = (1)/(2)) and the neutral diamagnetic species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt) have also been generated in solution or in the solid state as [N(n-Bu)(4)][M(II)(L(Bu))(L(Bu)(*))] salts. The corresponding complex [Cu(III)(L(Bu))(2)](-) has also been investigated. The complexes have been studied by UV-vis, IR, and EPR spectroscopy and by X-ray crystallography; their electro- and magnetochemistry is reported. The electron-transfer series [M(L(Bu))(2)](2-,-,0) is shown to be ligand based involving formally one (L(Bu)(*))(-) pi radical in the monoanion or two in the neutral species [M(II)(L(Bu)(*))(2)] (M = Ni, Pd, Pt). Geometry optimizations using all-electron density functional theory with scalar relativistic corrections at the second-order Douglas-Kroll-Hess (DKH2) and zeroth-order regular approximation (ZORA) levels result in excellent agreement with the experimentally determined structures and electronic spectra. For the three neutral species a detailed analysis of the orbital structures reveals that the species may best be described as containing two strongly antiferromagnetically interacting ligand radicals. Furthermore, multiconfigurational ab initio calculations using the spectroscopy oriented configuration interaction (SORCI) approach including the ZORA correction were carried out. The calculations predict the position of the intervalence charge-transfer band well. Chemical trends in the diradical characters deduced from the multiconfigurational singlet ground-state wave function along a series of metals and ligands were discussed.  相似文献   

3.
The reaction of three different 1-phenyl and 1,4-diphenyl substituted S-methylisothiosemicarbazides, H(2)[L(1-6)], with Ni(OAc)(2).4H(2)O in ethanol in the presence of air yields six four-coordinate species [Ni(L(1-6)(*))(2)] (1-6) where (L(1-6)(*))(1-) represent the monoanionic pi-radical forms. The crystal structures of the nickel complexes with 1-phenyl derivatives as in 1 reveal a square planar structure trans-[Ni(L(1)(-3)(*))(2)], whereas the corresponding 1,4-diphenyl derivatives are distorted tetrahedral as is demonstrated by X-ray crystallography of [Ni(L(5)(*))(2)] (5) and [Ni(L(6)(*))(2)] (6). Both series of mononuclear complexes possess a diamagnetic ground state. The electronic structures of both series have been elucidated experimentally (electronic spectra magnetization data). The square planar complexes 1-3 consist of a diamagnetic central Ni(II) ion and two strongly antiferromagnetically coupled ligand pi-radicals as has been deduced from correlated ab initio calculations; they are singlet diradicals. The tetrahedral complexes 4-6 consist of a paramagnetic high-spin Ni(II) ion (S(Ni) = 1), which is strongly antiferromagnetically coupled to two ligand pi-radicals. This is clearly revealed by DFT and correlated ab initio calculations. Electrochemically, complexes 1-6 can be reduced to form stable, paramagnetic monoanions [1-6](-) (S = (1)/(2)). The anions [1-3](-) are square planar Ni(II) (d,(8) S(Ni) = 0) species where the excess electron is delocalized over both ligands (class III, ligand mixed valency). In contrast, one-electron reduction of 4, 5, and 6 yields paramagnetic tetrahedral monoanions (S = (1)/(2)). X-band EPR spectroscopy shows that there are two different isomers A and B of each monoanion present in solution. In these anions, the excess electron is localized on one ligand [Ni(II)(L(4-6)(*))(L(4-6))](-) where (L(4-6))(2-) is the closed shell dianion of the ligands H(2)[L(4-6)] as was deduced from their electronic spectra and broken symmetry DFT calculations. Oxidation of 1 and 5 with excess iodine yields octahedral complexes [Ni(II)(L(1,ox))(2)I(2)] (7), [Ni(II)(L(1,ox))(3)](I(3))(2) (8), and trans-[Ni(II)(L(5,ox))(2)(I(3))(2)] (9), which have been characterized by X-ray crystallography; (L(1-)(6,ox)) represent the neutral, two-electron oxidized forms of the corresponding dianions (L(1-6))(2-). The room-temperature structures of complexes 1, 5, and 7 have been described previously in refs 1-5.  相似文献   

4.
The reaction of the dinuclear species (mu-NH,NH)[Fe(III)(L(IP))(L(AP))](2) dissolved in CH(2)Cl(2) with dioxygen affords black microcrystals of diamagnetic (mu-S,S)[Fe(III)(L(IP))(L(ISQ))](2).n-hexane (6) upon the addition of n-hexane, where (L(IP))(2)(-) represents the dianion of 4,6-di-tert-butyl-2-aminothiophenol, (L(AP))(-) is the corresponding monoanion, and (L(ISQ))(-) is the corresponding o-iminothionebenzosemiquinonate(1-) pi radical monoanion; similarly, the dianion ('H(2)N(2)S(2)')(2)(-) is derived from 1,2-ethanediamine-N,N'-bis(2-benzenethiol), and ('N(2)S(2)(*)')(3)(-) is its monoradical trianion. The above reaction in a CH(2)Cl(2)/CH(3)OH (1:1) mixture yields the diamagnetic isomer (mu-NH,NH)[Fe(III)(L(IP))(L(ISQ))](2).5CH(3)OH (7), whereas air oxidation of (mu-S,S)[Fe(II)('H(2)N(2)S(2)')](2) in CH(3)CN yields diamagnetic (mu-S,S)[Fe(III)('N(2)S(2)(*)')](2) (8). Complexes 6 and 8 were shown to undergo addition reactions with phosphines, phosphites, or cyanide affording the following complexes: trans-[Fe(II)(L(ISQ))(2)(P(OPh)(3))] (9; S(t) = 0) and [N(n-Bu)(4)][Fe(II)(L(ISQ))(2)(CN)] (S(t) = 0). Oxidation of 6 in CH(2)Cl(2) with iodine, bromine, and chlorine respectively yields black microcrystals of [Fe(III)(L(ISQ))(2)X] (X = I, Br, or Cl) with S(t) = (1)/(2). The structures of complexes 6-9 have been determined by X-ray crystallography at 100 K. The oxidation level of the ligands and iron ions in all complexes has been unequivocally established, as indicated by crystallography; electron paramagnetic resonance, UV-vis, and M?ssbauer spectroscopies; and magnetic-susceptibility measurements. The N,S-coordinated o-iminothionebenzosemiquinonate(1-) pi radicals have been identified in all new complexes. The electronic structures of the new complexes have been determined, and it is shown that no evidence for iron oxidation states >III is found in this chemistry.  相似文献   

5.
A series of sulfonate-tagged 1,4-diazabutadiene (DAD(S)) ligands was prepared as salts with typical ionic liquid (IL) cations ([EMIM](+), [BMIM](+), [BMMIM](+), Bu(4)N(+), Bu(3)PMe(+), [Gua-4,4-4,4-4,1](+)). Complexation behaviour of the ligands was investigated by preparing complexes of the types [BMMIM](2)[MCl(2)(DAD(S))] (M = Pd, Pt), [BMMIM][Rh(COD)(DAD(S))] and [BMMIM](2)[Mo(CO)(4)(DAD(S))]. Using UV-Vis spectroscopy, the latter sulfonate-tagged chromophore was shown to be well soluble in the sulfonate IL [BMIM]OTf and completely insoluble in toluene, resulting in perfect immobilization. The crystal structures of [HNEt(3)](2)[2,6-Me(2)-Me-DAD(S)], [BMIM](2)[2,6-Me(2)-Me-DAD(S)], [BMMIM](2)[2,4,6-Me(3)-Me-DAD(S)], [BMMIM](2)[2,6-iPr(2)-Me-DAD(S)] and [HNEt(3)](2)[PdCl(2)(2,6-Me(2)-Me-DAD(S))] were determined. Regarding the diimine fragment, they show geometries similar to the respective non-sulfonated parent compounds.  相似文献   

6.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

7.
The square planar, light-green, diamagnetic complex [N(n-Bu)(4)][Au(III)(L(t)()(-)(Bu))(2)] (1) reacts with iodine in acetone affording the neutral paramagnetic species [Au(L(t)()(-)(Bu))(2)] (1a) (S = (1)/(2)) where H(2)[L(t)()(-)(Bu)] represents the ligand 3,5-di-tert-butyl-1,2-benzenedithiol. The corresponding complexes containing the unsubstituted ligand H(2)[L], 1,2-benzenedithiol, namely [N(n-Bu)(3)H][Au(L)(2)] (2) and [Au(L)(2)] (2a), have also been prepared and characterized by X-ray crystallography; the structure of the latter has been reported in ref 10. (197)Au M?ssbauer spectra of 1 and 1a clearly show that the one-electron oxidation is ligand-centered and does not involve the formation of Au(IV) (d(7)). The spectroscopic features of the ligand mixed-valent species 1a were determined by UV-vis, EPR, and IR spectroscopy which allows the detection of S,S-coordinated 1,2-dithiobenzosemiquinonate(1-) radicals in coordination compounds.  相似文献   

8.
The coordination chemistry of the ligands o-aminothiophenol, H(abt), 4,6-di-tert-butyl-2-aminothiophenol, H[L(AP)], and 1,2-ethanediamine-N,N'-bis(2-benzenethiol), H(4)('N(2)S(2')), with FeCl(2) under strictly anaerobic and increasingly aerobic conditions has been systematically investigated. Using strictly anaerobic conditions, the neutral, air-sensitive, yellow complexes (mu-S,S)[Fe(II)(abt)(2)](2) (1), (mu-S,S)[Fe(II)(L(AP))(2)](2).8CH(3)OH (2), and (mu-S,S)[Fe(II)('H(2)N(2)S(2'))](2).CH(3)CN (3) containing high spin ferrous ions have been isolated where (abt)(1-), (L(AP))(1-), and ('H(2)N(2)S(2'))(2-) represent the respective N,S-coordinated, aromatic o-aminothiophenolate derivative of these ligands. When the described reaction was carried out in the presence of trace amounts of O(2) and [PPh(4)]Br, light-green crystals of [PPh(4)][Fe(II)(abt)(2)(itbs)].[PPh(4)]Br (4) were isolated. The anion [Fe(II)(abt)(2)(itbs)](-) contains a high spin ferrous ion, two N,S-coordinated o-aminophenolate(1-) ligands, and an S-bound, monoanionic o-iminothionebenzosemiquinonate(1-) pi radical, (itbs)(-). Complex 4 possesses an S(t) = 3/2 ground state. In the absence of [PPh(4)]Br and presence of a base NEt(3) and a little O(2), the ferric dimer (mu-NH,NH)[Fe(III)(L(AP))(L(IP))](2) (5a) and its isomer (mu-S,S)[Fe(III)(L(AP))(L(IP))](2) (5b) formed. (L(IP))(2-) represents the aromatic o-iminothiophenolate(2-) dianion of H[L(AP)]. The structures of compounds 2, 4, and 5a have been determined by X-ray crystallography at 100(2) K. Zero-field M?ssbauer spectroscopy of 1, 2, 3, and 4 unambiguously shows the presence of high spin ferrous ions: The isomer shift at 80 K is in the narrow range 0.85-0.92 mm s(-1), and a large quadrupole splitting, |DeltaE(Q)|, in the range 3.24-4.10 mm s(-1), is observed. In contrast, 5a and 5b comprise both intermediate spin ferric ions (S(Fe) = 3/2) which couple antiferromagnetically in the dinuclear molecules yielding an S(t) = 0 ground state.  相似文献   

9.
10.
Reaction of [Os(VI)(N)(L(1))(Cl)(OH(2))] (1) with CN(-) under various conditions affords (PPh(4))[Os(VI)(N)(L(1))(CN)(Cl)] (2), (PPh(4))(2)[Os(VI)(N)(L(2))(CN)(2)] (3), and a novel hydrogen cyanamido complex, (PPh(4))(2)[Os(III){N(H)CN}(L(3))(CN)(3)] (4). Compound 4 reacts readily with both electrophiles and nucleophiles. Protonation and methylation of 4 produce (PPh(4))[Os(III)(NCNH(2))(L(3))(CN)(3)] (5) and (PPh(4))[Os(III)(NCNMe(2))(L(3))(CN)(3)] (6), respectively. Nucleophilic addition of NH(3), ethylamine, and diethylamine readily occur at the C atom of the hydrogen cyanamide ligand of 4 to produce osmium guanidine complexes with the general formula [Os(III){N(H)C(NH(2))NR(1)R(2)}(L(3))(CN)(3)](-) , which have been isolated as PPh(4) salts (R(1) = R(2) = H (7); R(1) = H, R(2) = CH(2)CH(3) (8); R(1) = R(2) = CH(2)CH(3) (9)). The molecular structures of 1-5 and 7 and 8 have been determined by X-ray crystallography.  相似文献   

11.
Eight-coordinate [MX(4)(L-L)(2)] (M = Zr or Hf; X = Cl or Br; L-L = o-C(6)H(4)(PMe(2))(2) or o-C(6)H(4)(AsMe(2))(2)) were made by displacement of Me(2)S from [MX(4)(Me(2)S)(2)] by three equivalents of L-L in CH(2)Cl(2) solution, or from MX(4) and L-L in anhydrous thf solution. The [MI(4)(L-L)(2)] were made directly from reaction of MI(4) with the ligand in CH(2)Cl(2) solution. The very moisture-sensitive complexes were characterised by IR, UV/Vis, and (1)H and (31)P NMR spectroscopy and microanalysis. Crystal structures of [ZrCl(4)[o-C(6)H(4)(AsMe(2))(2)](2)], [ZrBr(4)[-C(6)H(4)(PMe(2))(2)](2)], [ZrI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] and [HfI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] all show distorted dodecahedral structures. Surprisingly, unlike the corresponding Ti(iv) systems, only the eight-coordinate complex was found in each system. In contrast, the ligand o-C(6)H(4)(PPh(2))(2) forms only six-coordinate complexes [MX(4)[-C(6)H(4)(PPh(2))(2)]] which were fully characterised spectroscopically and analytically. Surprisingly the tripodal triarsine, MeC(CH(2)AsMe(2))(3), also produces eight-coordinate [MX(4)[MeC(CH(2)AsMe(2))(3)](2)] in which the triarsines bind as bidentates in a distorted dodecahedral structure. There is no evidence for seven-coordination as found in some thioether systems.  相似文献   

12.
The reaction of (NBu4)3[V(III)(ox)3] (1, ox = oxalate) and M(II) (M = Fe, Co, Ni, Cu) ions in MeCN, leads to the isolation of V-based coordination polymers of [N(n-Bu)4][Fe(II)V(II)I(ox)3].0.30[[N(n-Bu)4](BF4)] (2), [N(n-Bu)4][Co(II)V(III)(ox)3].0.75[[N(n-Bu)4](BF4)] (3), [N(n-Bu)4][Ni(II)V(III)(ox)3].0.20[[N(n-Bu)4](BF4)].0.20MeCN (4), and [N(n-Bu)4][Cu(II)V(III)(ox)2](BF4)2 (5) composition. Due to the lability of [V(III)(ox)3]3- to dissociate ox2-, these compounds cannot be prepared from aqueous media. 5 is best described as [N(n-Bu)4][V(III)Cu(II)(ox)2](BF4)2, and 2, 3, 4, and 5 are proposed to have a layered (2-D) motif for the MM(ox)x (x = 2, 3) extended framework. The [V(III)Cu(II)(ox)2] composition of 5 is reported for the first time for a bimetallic oxalate. 2 shows a weak antiferromagnetic interaction between Fe(II), S = 2 and V(III), S = 1 ions (theta = -9.4 K) within the 2-D layers. 3 and 5 do not magnetically order above 2 K. 4 magnetically order as ferromagnets below 2.55 K [taken as the onset of magnetization in chi'(T)], and has a glass transition temperature (chi'(max) at 1000 Hz) at 2.26 K.  相似文献   

13.
Reactions of 1,1'-bis(dipheny1phosphino)cobaltocene with Co(PMe(3))(4), Ni(PMe(3))(4), Fe(PMe(3))(4), Ni(COD)(2), FeMe(2)(PMe(3))(4) or NiMe(2)(PMe(3))(3) afford a series of novel dinuclear complexes [((Me(3)P)[lower bond 1 start]Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)M[upper bond 1 end](η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (M = Co(1), Ni(2) and Fe(3)) [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](COD)](4), [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](PMe(3))(2)] (5) and [((Me(3)P)[lower bond 1 start]Co(Me)(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)Fe[upper bond 1 end](Me)(η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (6). Reactions of 1,1'-bis(dipheny1phosphino)ferrocene with Ni(PMe(3))(4), NiMe(2)(PMe(3))(3), or Co(PMe(3))(4) gives rise to complexes [Fe(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)M[upper bond 1 end](PMe(3))(2)] (M = Ni (7), Co (8)). The complexes 1-8 were spectroscopically investigated and studied by X-ray single crystal diffraction. The possible reaction mechanisms and structural characteristics are discussed. Density functional theory (DFT) calculations strongly support the deductions.  相似文献   

14.
Treatment of titanyl sulfate in dilute sulfuric acid with 1 equiv of NaL(OEt) (L(OEt)(-) = [(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)](3)](-)) in the presence of Na(3)PO(4) and Na(4)P(2)O(7) led to isolation of [(L(OEt)Ti)(3)(mu-O)(3)(mu(3-)PO(4))] (1) and [(L(OEt)Ti)(2)(mu-O)(mu-P(2)O(7))] (2), respectively. The structure of 1 consists of a Ti(3)O(3) core capped by a mu(3)-phosphato group. In 2, the [P(2)O(7)](4-) ligands binds to the two Ti's in a mu:eta(2),eta(2) fashion. Treatment of titanyl sulfate in dilute sulfuric acid with NaL(OEt) and 1.5 equiv of Na(2)Cr(2)O(7) gave [(L(OEt)Ti)(2)(mu-CrO(4))(3)] (3) that contains two L(OEt)Ti(3+) fragments bridged by three mu-CrO(4)(2-)-O,O' ligands. Complex 3 can act as a 6-electron oxidant and oxidize benzyl alcohol to give ca. 3 equiv of benzaldehyde. Treatment of [L(OEt)Ti(OTf)(3)] (OTf(-) = triflate) with [n-Bu(4)N][ReO(4)] afforded [[L(OEt)Ti(ReO(4))(2)](2)(mu-O)] (4). Treatment of [L(OEt)MF(3)] (M = Ti and Zr) with 3 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(3)] (5) and [L(OEt)Zr(ReO(4))(3)(H(2)O)] (6), respectively. Treatment of [L(OEt)MF(3)] with 2 equiv of [ReO(3)(OSiMe(3))] afforded [L(OEt)Ti(ReO(4))(2)F] (7) and [[L(OEt)Zr(ReO(4))(2)](2)(mu-F)(2)] (8), respectively, which reacted with Me(3)SiOTf to give [L(OEt)M(ReO(4))(2)(OTf)] (M = Ti (9), Zr (10)). Hydrolysis of [L(OEt)Zr(OTf)(3)] (11) with Na(2)WO(4).xH(2)O and wet CH(2)Cl(2) afforded the hydroxo-bridged complexes [[L(OEt)Zr(H(2)O)](3)(mu-OH)(3)(mu(3)-O)][OTf](4) (12) and [[L(OEt)Zr(H(2)O)(2)](2)(mu-OH)(2)][OTf](4) (13), respectively. The solid-state structures of 1-3, 6, and 11-13 have been established by X-ray crystallography. The L(OEt)Ti(IV) complexes can catalyze oxidation of methyl p-tolyl sulfide with tert-butyl hydroperoxide. The bimetallic Ti/ Re complexes 5 and 9 were found to be more active catalysts for the sulfide oxidation than other Ti(IV) complexes presumably because Re alkylperoxo species are involved as the reactive intermediates.  相似文献   

15.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

16.
As part of our work on models of the iron(III) site of Fe-containing nitrile hydratase, a designed ligand PyPSH(4) with two carboxamide and two thiolate donor groups has been synthesized. Reaction of (Et(4)N)[FeCl(4)] with the deprotonated form of the ligand in DMF affords the mononuclear iron(III) complex (Et(4)N)[Fe(III)(PyPS)] (1) in high yield. The iron(III) center is in a trigonal bipyramidal geometry with two deprotonated carboxamido nitrogens, one pyridine nitrogen, and two thiolato sulfurs as donors. Complex 1 is stable in water and binds a variety of Lewis bases at the sixth site at low temperature to afford green solutions with a band around 700 nm. The iron(III) centers in these six-coordinate species are low-spin and exhibit EPR spectra much like the enzyme. The pK(a) of the water molecule in [Fe(III)(PyPS)(H(2)O)](-) is 6.3 +/- 0.4. The iron(III) site in 1 with ligated carboxamido nitrogens and thiolato sulfurs does not show any affinity toward nitriles. It thus appears that at physiological pH, a metal-bound hydroxide promotes hydration of nitriles nested in close proximity of the iron center in the enzyme. Redox measurements demonstrate that the carboxamido nitrogens prefer Fe(III) to Fe(II) centers. This fact explains the absence of any redox behavior at the iron site in nitrile hydratase. Upon exposure to limited amount of dioxygen, 1 is converted to the bis-sulfinic species. The structure of the more stable O-bonded sulfinato complex (Et(4)N)[Fe(III)(PyP[SO(2)](2))] (2) has been determined. Six-coordinated low-spin cyanide adducts of the S-bonded and the O-bonded sulfinato complexes, namely, Na(2)[Fe(III)(PyP[SO(2)](2))(CN)] (4) and (Et(4)N)(2)[Fe(III)(PyP[SO(2)](2))(CN)] (5), afford green solutions in water and other solvents. The iron(II) complex (Et(4)N)(2)[Fe(II)(PyPS)] (3) has also been isolated and structurally characterized.  相似文献   

17.
The hexaphosphapentaprismane P(6)C(4)(t)Bu(4) undergoes specific insertion of the zerovalent platinum fragment [Pt(PPh(3))(2)] into the unique P-P bond between the 5-membered rings to afford [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)]. A similar reaction with the Pt(ii) complexes [{PtCl(2)(PMe(3))}(2)] and [PtCl(2)(eta(4)-COD)] results in both insertion and chlorine migration reactions. The complexes [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)], trans-[PtCl(PMe(3))P(6)C(4)(t)Bu(4)Cl], cis-,trans-[{PtCl(2)(PMe(3))}micro-{P(6)C(4)(t)Bu(4)}{PtCl(2)(PMe(3))}], [{PtClP(6)C(4)(t)Bu(4)Cl}(2)] and cis-[PtClP(6)C(4)(t)Bu(4)Cl(P(6)C(4)(t)Bu(4))] have been structurally characterized by single crystal X-ray diffraction and multinuclear NMR studies.  相似文献   

18.
A series of mononuclear square-based pyramidal complexes of iron containing two 1,2-diaryl-ethylene-1,2-dithiolate ligands in various oxidation levels has been synthesized. The reaction of the dinuclear species [Fe(III)2(1L*)2(1L)2]0, where (1L)2- is the closed shell di-(4-tert-butylphenyl)-1,2-ethylenedithiolate dianion and (1L*)1- is its one-electron-oxidized pi-radical monoanion, with [N(n-Bu)4]CN in toluene yields dark green crystals of mononuclear [N(n-Bu)4][Fe(II)(1L*)2(CN)] (1). The oxidation of 1 with ferrocenium hexafluorophosphate yields blue [Fe(III)(1L*)2(CN)] (1ox), and analogously, a reduction with [Cp2Co] yields [Cp2Co][N(n-Bu)4][Fe(II)(1L*)(1L)(CN)] (1red); oxidation of the neutral dimer with iodine gives [Fe(III)(1L*)2I] (2). The dimer reacts with the phosphite P(OCH3)3 to yield [Fe(II)(1L*)2{P(OCH3)3}] (3), and [Fe(III)2(3L*)2(3L)2] reacts with P(OC6H5)3 to give [Fe(II)(3L*)2{P(OC6H5)3}] (4), where (3L)2- represents 1,2-diphenyl-1,2-ethylenedithiolate(2-). Both 3 and 4 were electrochemically one-electron oxidized to the monocations 3ox and 4ox and reduced to the monoanions 3red and 4red. The structures of 1 and 4 have been determined by X-ray crystallography. All compounds have been studied by magnetic susceptibility measurements, X-band EPR, UV-vis, IR, and M?ssbauer spectroscopies. The following five-coordinate chromophores have been identified: (a) [Fe(III)(L*)2X]n, X = CN-, I- (n = 0) (1ox, 2); X = P(OR)3 (n = 1+) )3ox, 4ox) with St = 1/2, SFe = 3/2; (b) [Fe(II)(L*)2X]n, X = CN-, (n = 1-) (1); X = P(OR)3 (n = 0) (3, 4) with St = SFe = 0; (c) [Fe(II)(L*)(L)X]n <--> [Fe(II)(L)(L*)X]n, X = CN- (n = 2-) (1red); X = P(OR)3 (n = 1-) (3red, 4red) with St = 1/2, SFe = 0 (or 1). Complex 1ox displays spin crossover behavior: St = 1/2 <--> St = 3/2 with intrinsic spin-state change SFe = 3/2 <--> SFe = 5/2. The electronic structures of 1 and 1(ox) have been established by density functional theoretical calculations: [Fe(II)(1L*)2(CN)]1- (SFe = 0, St = 0) and [Fe(III)(1L*)2(CN)]0 (SFe = 3/2, St = 1/2).  相似文献   

19.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

20.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号