首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen  Anyue  Wu  Xiaohan  Zhang  Jing 《Queueing Systems》2020,95(3-4):331-378

We study a modified Markovian bulk-arrival and bulk-service queue incorporating general state-dependent control. The stopped bulk-arrival and bulk-service queue is first investigated, and the relationship between this stopped queue and the full queueing model is examined and exploited. Using this relationship, the equilibrium behaviour for the full queueing process is studied and the probability generating function of the equilibrium distribution is obtained. Queue length behaviour is also examined, and the Laplace transform of the queue length distribution is presented. The important questions regarding hitting times and busy period distributions are answered in detail, and the Laplace transforms of these distributions are presented. Further properties regarding the busy period distributions including expectation and conditional expectation of busy periods are also explored.

  相似文献   

2.
Bulk-arrival queues with single servers that provide bulk service are widespread in the real world, e.g., elevators in buildings, people-movers in amusement parks, air-cargo delivery planes, and automated guided vehicles. Much of the literature on this topic focusses on the development of the theory for waiting time and number in such queues. We develop the theory for the number stranded, i.e., the number of customers left behind after each service, in queues of the M/G/1 form, where there is single server, the arrival process is Poisson, the service is of a bulk nature, and the service time is a random variable. For the homogenous Poisson case, in our model the service time can have any given distribution. For the non-homogenous Poisson arrivals, due to a technicality, we assume that the service time is a discrete random variable. Our analysis is not only useful for performance analysis of bulk queues but also in designing server capacity when the aim is to reduce the frequency of stranding. Past attempts in the literature to study this problem have been hindered by the use of Laplace transforms, which pose severe numerical difficulties. Our approach is based on using a discrete-time Markov chain, which bypasses the need for Laplace transforms and is numerically tractable. We perform an extensive numerical analysis of our models to demonstrate their usefulness. To the best of our knowledge, this is the first attempt in the literature to study this problem in a comprehensive manner providing numerical solutions.  相似文献   

3.
We consider the decay parameter, invariant measures/vectors and quasi-stationary dis- tributions for 2-type Markov branching processes. Investigating such properties is crucial in realizing life period of branching models. In this paper, some important properties of the generating functions for 2-type Markov branching q-matrix are firstly investigated in detail. The exact value of the decay parameter λC of such model is given for the communicating class C = Z+2 \ 0. It is shown that this λC can be directly ...  相似文献   

4.
Koole  Ger  Righter  Rhonda 《Queueing Systems》1998,28(4):337-347
We consider optimal policies for reentrant queues in which customers may be served several times at the same station. We show that for tandem reentrant queues the last-buffer first-served (LBFS) policy stochastically maximizes the departure process. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
We consider a multiclass service system with refusal and bulk-arrival. The properties regarding recurrence, ergodicity, and decay properties of such model are discussed. The explicit criteria regarding recurrence and ergodicity are obtained. The stationary distribution is given in the ergodic case. Then, the exact value of the decay parameter, denoted by λE, is obtained in the transient case. The criteria for the λE-recurrence are also obtained. Finally, the corresponding λE-invariant vector/measure is considered.  相似文献   

6.
This paper is concerned with the optimal design of queueing systems. The main decisions in the design of such systems are the number of servers, the appropriate control to have on the arrival rates, and the appropriate service rate these servers should possess. In the formulation of the objective function to this problem, most publications use only linear cost rates. The linear rates, especially for the waiting cost, do not accurately reflect reality. Although there are papers involving nonlinear cost functions, no paper has ever considered using polynomial cost functions of degree higher than two. This is because simple formulas for computing the higher moments are not available in the literature. This paper is an attempt to fill this gap in the literature. Thus, the main contributions of our work are as follows: (i) the derivation of a very simple formula for the higher moments of the waiting time for the M/M/s queueing system, which requires only the knowledge of the expected waiting time; (ii) proving their convexity with respect to the design variables; and (iii) modeling and solving more realistic design problems involving general polynomial cost functions. We also focus on simultaneous optimization of the staffing level, arrival rate and service rate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Gold  Hermann 《Queueing Systems》1998,30(3-4):435-455
In this paper we consider a Markovian single server system which processes items arriving from an upstream region (as usual in queueing systems) and is controlled by a demand arrival stream for finished items from a downstream area. A finite storage is available at the server to store finished items not immediately needed in the downstream area. The system considered corresponds to an assembly-like queue with two input streams. The system is stable in a strict sense only if all queues are finite, i.e., both random processes are synchronized via blocking. This notion leads to a complementary system with a very similar state space which is a pair of Markovian single servers with synchronous arrivals. In the mathematical analysis the main focus is on the state probabilities and expectation of minimum and maximum of the two input queues. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Righter  Rhonda 《Queueing Systems》2000,34(1-4):289-300
We consider an M/M/2 system with nonidentical servers and multiple classes of customers. Each customer class has its own reward rate and holding cost. We may assign priorities so that high priority customers may preempt lower priority customers on the servers. We give two models for which the optimal admission and scheduling policy for maximizing expected discounted profit is determined by a threshold structure on the number of customers of each type in the system. Surprisingly, the optimal thresholds do not depend on the specific numerical values of the reward rates and holding costs, making them relatively easy to determine in practice. Our results also hold when there is a finite buffer and when customers have independent random deadlines for service completion.  相似文献   

9.
A survey of Markov decision models for control of networks of queues   总被引:2,自引:0,他引:2  
We review models for the optimal control of networks of queues. Our main emphasis is on models based on Markov decision theory and the characterization of the structure of optimal control policies.This research was partially supported by the National Science Foundation under Grant No. DDM-8719825. The Government has certain rights in this material. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The research was also partially supported by the C.I.E.S. (France), while the author was on leave at INRIA, Sophia-Antipolis, 1991–92.  相似文献   

10.
11.
This paper deals with the statistical analysis from a Bayesian point of view, of bulk arrival queues where the batch size is considered as a fixed constant. The focus is on prediction of the usual measures of performance of the system in the steady state. The probability generating function of the posterior predictive distribution of the number of customers in the system and the Laplace transform of the posterior predictive distribution of the waiting time in the system are obtained. Numerical inversion of these transforms is considered. Inference and prediction of its equivalent single queue with service in stages is also discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Networks of infinite-server queues with nonstationary Poisson input   总被引:1,自引:0,他引:1  
In this paper we focus on networks of infinite-server queues with nonhomogeneous Poisson arrival processes. We start by introducing a more general Poisson-arrival-location model (PALM) in which arrivals move independently through a general state space according to a location stochastic process after arriving according to a nonhomogeneous Poisson process. The usual open network of infinite-server queues, which is also known as a linear population process or a linear stochastic compartmental model, arises in the special case of a finite state space. The mathematical foundation is a Poisson-random-measure representation, which can be obtained by stochastic integration. It implies a time-dependent product-form result: For appropriate initial conditions, the queue lengths (numbers of customers in disjoint subsets of the state space) at any time are independent Poisson random variables. Even though there is no dependence among the queue lengths at each time, there is important dependence among the queue lengths at different times. We show that the joint distribution is multivariate Poisson, and calculate the covariances. A unified framework for constructing stochastic processes of interest is provided by stochastically integrating various functionals of the location process with respect to the Poisson arrival process. We use this approach to study the flows in the queueing network; e.g., we show that the aggregate arrival and departure processes at a given queue (to and from other queues as well as outside the network) are generalized Poisson processes (without necessarily having a rate or unit jumps) if and only if no customer can visit that queue more than once. We also characterize the aggregate arrival and departure processes when customers can visit the queues more frequently. In addition to obtaining structural results, we use the stochastic integrals to obtain explicit expressions for time-dependent means and covariances. We do this in two ways. First, we decompose the entire network into a superposition of independent networks with fixed deterministic routes. Second, we make Markov assumptions, initially for the evolution of the routes and finally for the entire location process. For Markov routing among the queues, the aggregate arrival rates are obtained as the solution to a system of input equations, which have a unique solution under appropriate qualifications, but not in general. Linear ordinary differential equations characterize the time-dependent means and covariances in the totally Markovian case.  相似文献   

13.
Dantzer  J.-F.  Mitrani  I.  Robert  Ph. 《Queueing Systems》2001,38(1):5-24
The asymptotic behaviour of the M/M/n queue, with servers subject to independent breakdowns and repairs, is examined in the limit where the number of servers tends to infinity and the repair rate tends to 0, such that their product remains finite. It is shown that the limiting two-dimensional Markov process corresponds to a queue where the number of servers has the same stationary distribution as the number of jobs in an M/M/ queue. Hence, the limiting model is referred to as the M/M/[M/M/] queue. Its numerical solution is discussed.Next, the behaviour of the M/M/[M/M/] queue is analysed in heavy traffic when the traffic intensity approaches 1. The convergence of the (suitably normalized) process of the number of jobs to a diffusion is proved.  相似文献   

14.
15.
We consider a discrete-time Markov decision process with a partially ordered state space and two feasible control actions in each state. Our goal is to find general conditions, which are satisfied in a broad class of applications to control of queues, under which an optimal control policy is monotonic. An advantage of our approach is that it easily extends to problems with both information and action delays, which are common in applications to high-speed communication networks, among others. The transition probabilities are stochastically monotone and the one-stage reward submodular. We further assume that transitions from different states are coupled, in the sense that the state after a transition is distributed as a deterministic function of the current state and two random variables, one of which is controllable and the other uncontrollable. Finally, we make a monotonicity assumption about the sample-path effect of a pairwise switch of the actions in consecutive stages. Using induction on the horizon length, we demonstrate that optimal policies for the finite- and infinite-horizon discounted problems are monotonic. We apply these results to a single queueing facility with control of arrivals and/or services, under very general conditions. In this case, our results imply that an optimal control policy has threshold form. Finally, we show how monotonicity of an optimal policy extends in a natural way to problems with information and/or action delay, including delays of more than one time unit. Specifically, we show that, if a problem without delay satisfies our sufficient conditions for monotonicity of an optimal policy, then the same problem with information and/or action delay also has monotonic (e.g., threshold) optimal policies.  相似文献   

16.
We consider the joint pricing and inventory control problem for a single product over a finite horizon and with periodic review. The demand distribution in each period is determined by an exogenous Markov chain. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. The surplus costs as well as fixed and variable costs are state dependent. We show the existence of an optimal (sSp)-type feedback policy for the additive demand model. We extend the model to the case of emergency orders. We compute the optimal policy for a class of Markovian demand and illustrate the benefits of dynamic pricing over fixed pricing through numerical examples. The results indicate that it is more beneficial to implement dynamic pricing in a Markovian demand environment with a high fixed ordering cost or with high demand variability.  相似文献   

17.
18.
Scheller-Wolf [12] established necessary and sufficient conditions for finite stationary delay moments in stable FIFO GI/GI/s queues that incorporate the interaction between service time distribution, traffic intensity (ρ) and the number of servers in the queue. These conditions can be used to show that when the service time has finite first but infinite αth moment, s slow servers can give lower delays than one fast server. In this paper, we derive an alternative derivation of these moment results: Both upper bounds, that serve as sufficient conditions, and lower bounds, that serve as necessary conditions are presented. In addition, we extend the class of service time distributions for which the necessary conditions are valid. Our new derivations provide a structural interpretation of the moment bounds, giving intuition into their origin: We show that FIFO GI/GI/s delay can be represented as the minimum of (sk) i.i.d. GI/GI/1 delays, when ρ satisfies k < ρ < k+1. AMS Subject Classification 60K25  相似文献   

19.
In this paper, we consider a PH/M/2 queue in which each server has its own queue and arriving customers join the shortest queue. For this model, it has been conjectured that the decay rate of the tail probabilities for the shortest queue length in the steady state is equal to the square of the decay rate for the queue length in the corresponding PH/M/2 model with a single queue. We prove this fact in the sense that the tail probabilities are asymptotically geometric when the difference of the queue sizes and the arrival phase are fixed. Our proof is based on the matrix analytic approach pioneered by Neuts and recent results on the decay rates. AMS subject classifications: 60K25 · 60K20 · 60F10 · 90B22  相似文献   

20.
In this paper, we develop an approximation method for throughput in tandem queues with multiple independent reliable servers at each stage and finite buffers between service stations. We consider the blocking after service (BAS) blocking protocol of each service stage. The service time distribution of each server is exponential. The approximation is based on the decomposition of the system into a set of coupled subsystems which are modeled by two-stage tandem queue with two buffers and are analyzed by using the level dependent quasi-birth-and-death (LDQBD) process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号