首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wei Liu  Xianyue Su 《Physics letters. A》2010,374(29):2968-609
In this Letter, we numerically investigate the propagation characteristics of elastic transverse waves emitted by line sources embedded inside two-dimensional (2D) solid phononic crystals (PCs). The results show that collimation and enhancement of elastic transverse waves can be achieved at the band edge frequencies. We find that the collimation effect originates from the flat equifrequency contours (EFCs) at the band edge of appropriately designed 2D solid PCs. It is shown that, in addition to geometric symmetry, appropriate constituent material combination is essential to obtain flat EFCs at the band edge. A highly directional and enhanced elastic transverse wave source with a half power angular width of only 5.6° and an enhancement factor of 530 is realized simply by utilizing a finite-size 2D solid PC structure.  相似文献   

2.
The propagation characteristics of flexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11× 11 unit cells. The flexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.  相似文献   

3.
Many practical built-up thin-plate structures, e.g., a modern car body, are essentially assemblies of numerous thin plates joined at their edges. The plates are so thin that they invariably support the weight of the structure and machinery using their substantial in-plane stiffness. Consequently, vibrational power injected into the structure from sources mounted at these stiff points is controlled by high impedance long-wavelength in-plane waves in the plates. As the long in-plane waves propagate around the structure, they impinge upon the numerous structural joints at which short-wavelength flexural waves are generated in adjoining plates. These flexural waves have much lower impedance than the in-plane waves. Hence, the vibration of thin-plate structures excited at their stiff points develops into a mixture of long in-plane waves and short flexural waves. In a previous paper by the same authors, a numerically efficient finite element analysis which accommodated only the long in-plane waves was used to predict the forced response of a six-sided thin-plate box at the stiff points. This paper takes that finite element analysis and, drawing on theory developed in two additional papers by the same authors, couples analytical impedances to it in order to represent the short flexural waves generated at the structural joints. The parameters needed to define these analytical impedances are identified. The vibration of the impedances are used to calculate estimates of the mean-square flexural vibration of the box sides which compare modestly with laboratory measurements. The method should have merit in predicting the vibration of built-up thin-plate structures in the so-called “mid-frequency” region where the modal density of the long waves is too low to allow confident application of statistical energy analysis, yet the modal density of the short flexural waves is too high to allow efficient finite element analysis.  相似文献   

4.
Periodic structure theory is used to study the interactions between flexural and longitudinal wave motion in a beam (representing a plate) to which offset spring-mounted masses (representing stiffeners) are attached at regular intervals. An equation for the propagation constants of the coupled waves is derived. The response of a semi-infinite periodic beam to a harmonic force or moment at the finite end is analyzed in terms of the characteristic free waves corresponding to these propagation constants. Computer results are presented which show how the propagation constants are affected by the coupling, and how the forced response varies with distance from the excitation point. The spring-mounted masses can provide very high attenuation of both longitudinal and flexural waves when no coupling is present, but when coupling is introduced the two waves combine to give very low (or zero) attenuation of the longitudinal wave. The influence of different damping levels on spatial attenuation is also studied.  相似文献   

5.
《Physics letters. A》2006,357(2):154-158
The propagation of flexural vibration in the periodical membrane-like lattice structure is studied. The band structure calculated with the plane wave expansion method indicates the existence of complete gaps. The frequency response function of a finite periodic structure is simulated with finite element method. Frequency ranges with vibration attenuation are in good agreement with the gaps found in the band structure. Much larger attenuations are found in the complete gaps comparing to those directional ones. The existence of complete flexural vibration gaps in such a lattice structure provides a new idea for vibration control of thin plates.  相似文献   

6.
熊志成  朱丽霖  刘诚  高淑梅  朱健强 《物理学报》2015,64(24):247301-247301
设计了一种带有纳米天线的金属微腔结构, 以实现高强度表面等离子的定向激发. 在利用双狭缝结构实现表面等离子体波定向激发的基础上, 分别结合共振增强和干涉相长原理, 在传统结构的入射端面上添加纳米天线结构, 并增加狭缝通道数, 实现了定向激发的表面等离子体波的能量增强. 基于纳米天线的多通道高强度定向表面等离子体波激发装置结构简单, 系统紧凑, 并能够有效提高定向传播的表面等离子体波的能量密度和传播距离, 其对微纳光学传输和高密度光学集成领域等方面的研究具有重要意义.  相似文献   

7.
This paper deals with flexural wave motion in uniform beam-type periodic systems whose repeating units are identical finite beams with multiple beam-length disorders. A general expression derived for the propagation constants has been employed to study its variation with frequency for a beam system having 4-span disordered repeating units. This is helpful in understanding flexural wave motion in disordered periodic beams. Free flexural waves have been studied as wave groups consisting of a large number of harmonic components of different wavelengths, phase velocities and directions. Phase velocities have been computed and plotted for different frequencies in the propagation zones in which the free waves progress without attenuation. This has been found to be useful in understanding and predicting the coincidence phenomenon in disordered periodic beams under convected pressure field loading. The excitation of wave groups in disordered periodic beam-type systems by a slow (subsonic) convecting pressure field can include fast (supersonic) moving flexural wave components which can radiate sound. It has been pointed out that sound radiation from a disordered periodic beam (or plate) can be quite different as compared to that from a periodic beam under similar convected pressure field loading.  相似文献   

8.
The propagation of flexural waves in a two-dimensional periodic plate which rests on an orthogonal array of equi-spaced simple line supports has been investigated. A type of plane wave motion has been considered. An energy method has been developed to predict the frequency of wave propagation in terms of the propagation constants. A Galerkin type of analysis has been used, incorporating assumed complex modes of wave motion for the identical rectangular elements of the periodic plate. Expressions for the frequency have been obtained firstly by using simple polynomial modes for the plate displacements, and then (alternatively) by using characteristics beam function modes. The use of these different modes has first been demonstrated by applying them to the analysis of wave propagation in periodic beams. A single polynomial mode which satisfies the geometric and wave-boundary conditions of the periodic plate element leads to an elegant expression relating the frequency and the wave propagation constants in the first propagation band. The frequencies so obtained compare well with those found from a multi-mode, characteristic beam function analysis. The latter involves much more algebra, is solved as an eigenvalue problem, and yields the frequencies in as many propagation bands as are desired. The bounding frequencies and corresponding wave motions in the first and higher propagation bands have been identified, and it has been shown that the propagation bands can overlap. Consideration has been given to one-dimensional “strip” structures which are equivalent to the two-dimensional plate when a plane wave in a general direction is propagating. Furthermore, it is shown that the natural frequencies of finite rectangular periodic plates can be obtained very simply from the results of the wave propagation analysis.  相似文献   

9.
In this article, the investigation of the Lamb wave propagation in two-dimensional phononic crystals (PCs) composed of an array of periodic coating on a thin plate is presented. Compared with the traditional PCs usually consist of cylindrical scatters with uniform coatings in their exterior structure, the newly exterior coating structures with periodic alternant arrangement of two different materials are proposed. The band structures are calculated using finite element method. We discover that a complete band gap can be exhibited at low frequency. Furthermore, for a finite PCs plate, the computed transmission and resonance spectra shown an evident resonance nature which can be directly related to formation of the low-frequency gaps. The effects of different material parameters and arrangement mode of coating on the acoustic energy transmission and attenuation are also studied. Finally, the experimental transmission spectrum of the periodic coating PCs are also presented and compared with the numerical results. This study will provide useful support to the design of tuning band gaps and isolators in the low-frequency range.  相似文献   

10.
正方介质柱光子晶体中异常传输现象研究   总被引:1,自引:1,他引:0  
张世昌  唐志祥  文双春 《光子学报》2009,38(7):1717-1721
研究了电磁波在二维正方介质柱光子晶体中的传输,发现处于第一频带部分带隙的电磁波在不同界面切割方向上不同角度入射时可分别产生全反射及复杂异常折射现象如自准直现象、负折射现象.首先利用平面波展开法从理论上研究正方介质柱正方晶格光子晶体的频带结构及等频线,然后通过时域有限差分法来仿真研究光子晶体在第一频带部分带隙的传输特性.当光子晶体的界面切割沿着ΓX方向时,由于光子晶体内无本征模能够被有效地激发,入射波束被完全反射,这与光子带隙导致的全反射具有本质的不同;当光子晶体的界面切割方向沿着ΓM时,归因于其扁平的等频线,一定角度范围内入射的波束在光子晶体内几乎沿同方向传输即产生自准直现象.  相似文献   

11.
Aerospace structures often contain multi-layered metallic components where hidden defects such as fatigue cracks and localized disbonds can develop, necessitating non-destructive testing. Employing standard wedge transducers, high frequency guided ultrasonic waves that penetrate through the complete thickness were generated in a model structure consisting of two adhesively bonded aluminium plates. Interference occurs between the wave modes during propagation along the structure, resulting in a frequency dependent variation of the energy through the thickness with distance. The wave propagation along the specimen was measured experimentally using a laser interferometer. Good agreement with theoretical predictions and two-dimensional finite element simulations was found. Significant propagation distance with a strong, non-dispersive main wave pulse was achieved. The interaction of the high frequency guided ultrasonic waves with small notches in the aluminium layer facing the sealant and on the bottom surface of the multilayer structure was investigated. Standard pulse-echo measurements were conducted to verify the detection sensitivity and the influence of the stand-off distance predicted from the finite element simulations. The results demonstrated the potential of high frequency guided waves for hidden defect detection at critical and difficult to access locations in aerospace structures from a stand-off distance.  相似文献   

12.
The perturbation method is employed to analyse the guided waves in a borehole surrounded by a cubic crystal medium for the first time. The cubic crystal medium is regarded as a reference unperturbed isotropic state added to the perturbation. The dispersion characteristics of Stoneley wave, pseudo-Rayleigh wave, flexural wave, and screw wave are investigated in detail. It is found that dispersion of the guided waves excited by monopole and dipole sources does not depend on the azimuth of the source, whereas the dispersion of screw wave excited by quadrupole source is significantly related to the azimuth of the source. Screw waves propagated along different azimuth in the borehole can be split. This is different from screw waves in transversely isotropic media (hexagonal crystal), which have been widely studied.  相似文献   

13.
This paper presents an exact, wave-based approach for determining Bloch waves in two-dimensional periodic lattices. This is in contrast to existing methods which employ approximate approaches (e.g., finite difference, Ritz, finite element, or plane wave expansion methods) to compute Bloch waves in general two-dimensional lattices. The analysis combines the recently introduced wave-based vibration analysis technique with specialized Bloch boundary conditions developed herein. Timoshenko beams with axial extension are used in modeling the lattice members. The Bloch boundary conditions incorporate a propagation constant capturing Bloch wave propagation in a single direction, but applied to all wave directions propagating in the lattice members. This results in a unique and properly posed Bloch analysis. Results are generated for the simple problem of a periodic bi-material beam, and then for the more complex examples of square, diamond, and hexagonal honeycomb lattices. The bi-material beam clearly introduces the concepts, but also allows the Bloch wave mode to be explored using insight from the technique. The square, diamond, and hexagonal honeycomb lattices illustrate application of the developed technique to two-dimensional periodic lattices, and allow comparison to a finite element approach. Differences are noted in the predicted dispersion curves, and therefore band gaps, which are attributed to the exact procedure more-faithfully modeling the finite nature of lattice connection points. The exact method also differs from approximate methods in that the same number of solution degrees of freedom is needed to resolve low frequency, and arbitrarily high frequency, dispersion branches. These advantageous features may make the method attractive to researchers studying dispersion characteristics, band gap behavior, and energy propagation in two-dimensional periodic lattices.  相似文献   

14.
该文针对我国高速铁路轨道板缺陷的非接触动态检测问题,研究了空气耦合超声兰姆波在轨道板中的传播规律。首先,给出了轨道板中超声兰姆波的相速度和群速度频散曲线,结果表明:随着频厚积的增加,频散现象越明显,并且A0相速度收敛于Rayleigh波的波速。然后,建立轨道板中波传播的有限元模型,计算得到兰姆波传播的群速度为2220 m/s,且二维傅里叶变换系数的较大值沿Rayleigh波的频散曲线分布。最后,在沪杭高铁嘉兴南站进行了现场测试,以8.8°倾斜角向轨道板激励产生超声兰姆波,激发产生的兰姆波模态群速度为2325 m/s,且二维傅里叶变换分析其系数的较大值沿Rayleigh波的频散曲线分布。有限元计算结果和实验结果均与理论计算结果一致。该研究为后续轨道板缺陷的非接触动态检测提供了理论依据和实验方法。  相似文献   

15.
Fourier analysis is used to quantitatively assess the resolution, and in particular the isotropy of wave solution using finite difference spatial discretization schemes along with fourth order Runge–Kutta temporal scheme. Aspect ratio of the grid in two-dimension, along with the angle of wave propagation are the parameters varied to qualitatively and quantitatively assess the anisotropy of the solutions for (a) a skewed one-dimensional wave convecting in two-dimensions following the standard convection equation and (b) a wave propagating following the two-dimensional linearized rotating shallow water equations. Results show the effect of changing the aspect ratio and the propagation angle on the directional nature of the solution as obtained by different methods for the above non-dispersive and dispersive wave system.  相似文献   

16.
A general theory is presented of harmonic wave propagation in one-dimensional periodic systems with multiple coupling between adjacent periodic elements. The motion of each element is expressed in terms of a finite number of displacement coordinates. The nature and number of different wave propagation constants at any frequency are discussed, and the energy flow associated with waves having real, complex or imaginary propagation constants is investigated. Kinetic and potential energy functions are derived for the propagating waves and a generalized Rayleigh's Quotient and Rayleigh's Principle for the complex wave motion have been found. This is extended to yield a generalized Rayleigh-Ritz method of finding approximate, yet accurate, relationships between the frequencies and propagation constants of the propagating waves. The effect of damping is also considered, and a special class of “damped forced waves” is postulated for hysteretically damped periodic systems. An energy definition for the loss factor of these waves is found. Briefly considered is the two-dimensional multi-coupled periodic system in which a simple wave motion analogous to a plane wave propagates across the whole system.  相似文献   

17.
The propagation of acoustic wave in a two-dimensional phononic crystal of a hybrid triangular graphite array is investigated by the plane wave expansion (PWE) method. Our numerical results show that the location and width of the band gaps can be tuned by altering the radii of scatters at different positions.  相似文献   

18.
Zhenghua Li  Yanling Xue  Tinggen Shen 《Optik》2009,120(12):605-609
Based on transmission spectra, optical switching effect of equivalent negative refractive photonic crystals (PCs) composed of a triangular array of air cylinders in a GaAs matrix is studied by the finite-difference time-domain (FDTD) method in this paper. The mechanism of wave resonance is probed and the propagation of optical waves in the PCs is described in terms of effective refraction index and Bloch waves. Our numerical results show that the probability of spontaneous radiation would be enhanced extremely under the influence of Bloch resonance waves, stimulated emission and photon tunnel effect, resulting in the optical waves being localized greatly in the PCs at particular frequencies. In addition, we found that the position of transmission peaks, with values much greater than unit, can be controlled by tuning the central frequency of the waveguide source. It means that photon current in the PCs can also be controlled to optimize transmission properties of PCs, so as to meet the requirements of novel optical devices based on PCs, such as all-optical switches.  相似文献   

19.
The propagation of electromagnetic (EM) waves in two-dimensional triangular-lattice photonic crystals (PCs) is investigated through dispersion characteristics analysis and numerical simulation of field pattern. The designed PC structure can exhibit all angle negative refraction in the second and the eighth band. A flat superlen formed from such a PC has been designed and its imaging properties have been investigated systematically. Both in band 2 and band 8, a quite high quality image in the opposite side of the slab can be found.  相似文献   

20.
陈圣兵  王刚 《中国物理 B》2016,25(3):34301-034301
Piezoelectric shunting arrays are employed to control the wave propagation in flexible beams. Contrary to conventional symmetric configuration, a substrate beam with anti-symmetric shunting arrays is investigated by adapted transfer matrix method. Compared with symmetric scheme, the anti-symmetric one demonstrates some distinctive characteristics.Primarily, the longitudinal and flexural waves are coupled, so they are correlated and must be considered simultaneously.Moreover, the attenuation of flexural wave is much stronger in anti-symmetric scenario, while the longitudinal wave demonstrates the converse side. As a result, the anti-symmetric scheme can be utilized to improve the vibration isolation capability of shunting arrays. Finally, the theoretical analyses are validated by finite element simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号