首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Physica A》2006,363(2):198-210
A subdynamic based kinetic equation (SKE) for quantum information density (QID) is presented and using this is shown that the Liouville equation, Master equation and Fokker–Planck equation for QID all share the same formalism as the density operator. This allows one to directly use QID for studying quantum communication and to construct a quantum Gaussian channel. The channel is described by a quantum Fokker–Planck equation, which permits harmonic oscillator encoded information to transmit quantum signals with quantum parallelism. The quantum dynamical mutual information for this channel is also calculated.  相似文献   

2.
The formal structure of quantum information theory is based on the well-founded concepts and postulates of quantum mechanics. In the present contribution, I am inverting the usual approach presented in textbooks by beginning with the use of bit states as basic and fundamental units of information and establish a dynamical map for them. The condition of reversibility, imposed on an ordered sequence of actions operating on a bit state, introduces, by necessity, the unitarity property of actions. I also verify that the uniformity of time, as a parameter for ordering events, is due to the admission of a composition law for the actions. In the limit of infinitesimal intervals between actions, a reversible and linear equation arises for the dynamical changes in time of a qubit (superposition of bit states). The admission that a bit of information is stored or carried by a massive particle necessarily leads to the Schrödinger–Pauli equation (SPE); the bit is associated to a spin 1/2. Within this approach, I verify that the particle dynamical equation becomes “enslaved” by the spin dynamics. In other words, the bit (or spin) precedes in status the particle dynamical evolution, being at the root of the quantum character of the standard Schr¨odinger equation, even when spin and spatial degrees of freedom are uncoupled.  相似文献   

3.
The most general dynamical laws describing the evolution of isolated systems are discussed. These may be described by linear transformations which in classical physics apply to probability-distributions in quantum physics to density operators. Entropy does not decrease if and only if the equipartition is invariant under the dynamical transformation. This invariance follows in a natural way for isolated systems from the interpretation of entropy as lack of information. If entropy is conserved for quantum systems the dynamical transformation becomes a unitary transformation generated by a Hamiltonian whereas for classical systems a generalized form ofLiouville's equation may be derived.  相似文献   

4.
With the help of a set of exact closed-form solutions to the stationary Gross Pitaevskii equation, we compre-hensively investigate Landau and dynamical instabilities of a Bose-Einstein condensate in a periodic array of quantum wells. In the tight-binding limit, the anaiyticai expressions for both Landau and dynamical instabilities are obtained in terms of the compressibility and effective mass of the BEC system. Then the stability phase diagrams are shown to be similar to the one in the case of the sinusoidal optical lattice.  相似文献   

5.
The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.  相似文献   

6.
Some quantum properties of QED3 are studied with the help of an exact evolution equation of the effective action with the bare fermion mass. The resulting effective theory and the occurrence of a dynamical mass are discussed in the framework of the gradient expansion.  相似文献   

7.
The cubic scalar field theory admits the bell-shaped solitary wave solutions which can be interpreted as a massive Bose particles. We rule out the nonminimal p-brane action for such a solution as the point particle with curvature. When quantizing it as the theory with higher derivatives, it is shown that the corresponding quantum equation has SU(2) dynamical symmetry group realizing the exact spin-coordinate correspondence. Finally, we calculate the quantum corrections to the mass of the bell boson which can not be obtained by means of the perturbation theory starting from the vacuum sector.  相似文献   

8.
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton’s operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.  相似文献   

9.
We investigate the dynamics of the precision of the parameter estimation in many driven atoms, each of which interacts with a local structured bosonic reservoir respectively. The evolution of quantum states for single driven atom is described by the time local quantum master equation. The dynamics of the quantum Fisher information for many entangled atoms is obtained by means of the supreoperator mapping. The estimation limit is superior to the standard quantum limit during a characteristic interval. At a given time, the precision of parameter estimation can be improved to a maximal value if the number of entangled atoms is chosen to be an optimal value. The optimal number of entangled atoms is determined by the dynamical property. The decay of quantum Fisher information is accelerated with the increase of the number of entangled atoms.  相似文献   

10.
In this work, we use linear invariants and the dynamical invariant method to obtain exact solutions of the Schrödinger equation for the generalized time-dependent forced harmonic oscillator in terms of solutions of a second order ordinary differential equation that describes the amplitude of the classical unforced damped oscillator. In addition, we construct Gaussian wave packet solutions and calculate the fluctuations in coordinate and momentum as well as the quantum correlations between coordinate and momentum. It is shown that the width of the Gaussian packet, fluctuations and correlations do not depend on the external force. As a particular case, we consider the forced Caldirola-Kanai oscillator.  相似文献   

11.
Nature intrinsically computes. It has been suggested that the entire universe is a computer, in particular, a quantum computer. To corroborate this idea we require tools to quantify the information processing. Here we review a theoretical framework for quantifying information processing in a quantum dynamical system. So-called intrinsic quantum computation combines tools from dynamical systems theory, information theory, quantum mechanics, and computation theory. We will review how far the framework has been developed and what some of the main open questions are. On the basis of this framework we discuss upper and lower bounds for intrinsic information storage in a quantum dynamical system.  相似文献   

12.
In the framework of event-enhanced quantum theory the dynamical equation for the reduced density matrix of a quantum system interacting with a continuous classical system is derived. The asymptotic behavior of the corresponding dynamical semigroup is discussed. The example of a quantum–classical coupling on Lobatchevski space is presented.  相似文献   

13.
We present a quantum information network in which quantum information density is used for performing quantum computing or teleportation. The photons are entangled in quantum channels and play a role of flying ebit to transmit interaction among the nodes. A particular quantum Gaussian channel is constructed; it permits photon-encoded information to transmit quantum signals with certain quantum parallelism. The corresponding quantum dynamical mutual information is discussed, and the controlling nodes connectivity by driving the network is studied. With regard to different driving functions, the connectivity distribution of the network is complicated. They obey positive or negative power law, and also influence the assortativity coefficient or the dynamical property of the network.   相似文献   

14.
The entropy of a subalgebra, which has been used in quantum ergodic theory to construct a noncommutative dynamical entropy, coincides for N-level systems and Abelian subalgebras with the notion of maximal mutual information of quantum communication theory. The optimal decompositions of mixed quantum states singled out by the entropy of Abelian subalgebras correspond to optimal detection schemes at the receiving end of a quantum channel. It is then worthwhile studying in some detail the structure of the convex hull of quantum states brought about by the variational definition of the entropy of a subalgebra. In this Letter, we extend previous results on the optimal decompositions for 3-level systems.  相似文献   

15.
The notion of a nonlinear quantum dynamical semigroup is introduced, and the existence and uniqueness of solutions of the corresponding nonlinear evolution equations are studied in a more abstract framework. The construction of nonlinear quantum dynamical semigroups is carried out for two different mean-field models. First a mean-field coupling between a system of noninteracting subsystems and the bath is investigated. As examples, a nonlinear frictional Schrödinger equation and a model for a quantum Boltzmann equation are discussed. Second, a many-body system with mean-field interaction coupled to a bath is considered. Here, again, the form of the generator is derived; however, it cannot be obtained rigorously, except for some particular examples. Finally, the quantum Ising-Weiss model is briefly studied.  相似文献   

16.
In addition to the well-known Landauer–Büttiker scattering theory and the nonequilibrium Green’s function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number (n)-resolved master equation (n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.  相似文献   

17.
18.
The problem of describing the Brownian motion of a quantum harmonic oscillator or free particle is treated in the formalism of quantum dynamical semigroups. Certain inequalities involving the friction and diffusion coefficients and Planck's constant are derived. The nature of the quantum Langevin equation is discussed.  相似文献   

19.
We expand a set of notions recently introduced providing the general setting for a universal representation of the quantum structure on which quantum information stands. The dynamical evolution process associated with generic quantum information manipulation is based on the (re)coupling theory of SU (2) angular momenta. Such scheme automatically incorporates all the essential features that make quantum information encoding much more efficient than classical: it is fully discrete; it deals with inherently entangled states, naturally endowed with a tensor product structure; it allows for generic encoding patterns. The model proposed can be thought of as the non-Boolean generalization of the quantum circuit model, with unitary gates expressed in terms of 3nj coefficients connecting inequivalent binary coupling schemes of n + 1 angular momentum variables, as well as Wigner rotations in the eigenspace of the total angular momentum. A crucial role is played by elementary j-gates (6j symbols) which satisfy algebraic identities that make the structure of the model similar to “state sum models” employed in discretizing topological quantum field theories and quantum gravity. The spin network simulator can thus be viewed also as a Combinatorial QFT model for computation. The semiclassical limit (large j) is discussed.  相似文献   

20.
We give some remarks on the dynamical evolution (also nonlinear) of finite quantum system. We are interested int-asymptotic behavior of density matrices in the Liouville space formalism and we show that for nonlinear dynamical semigroups, as well as for the dynamical maps that do not form semigroups, the stationary time evolution may be attained for finite time in contrast to the motion generated by the linear dynamical semigroup. Recently the problem of constructing a nonlinear analog of quantum mechanics with nonlinear wave equation playing the role of the Schrödinger equation has been investigated by some authors; see for example Mielnik (1974), Bergmann (1968). Our work is related to this investigation and gives a characteristic feature of the nonlinear time evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号