首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixtures of zwitterionic and cationic surfactants were studied in the presence of an anionic polyelectrolyte. We used N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB12), dodecyltrimethyl ammonium bromide (DTA+Br-), and polyvinyl sulfate (potassium salt) (PVS-K+). The composition of the system was determined by measuring the activity of DTABr with an ion-selective electrode, and deducing the activity of SB12 from thermodynamic equations. This method provides information about the distribution of all species (activities of both surfactants and composition of the micelles), by experimental determination of only one quantity. SB12 affected the adsorption of DTABr onto PVSK. Copyright 1999 Academic Press.  相似文献   

2.
We report atomic force microscopy (AFM) measurements of the forces between borosilicate glass solids in aqueous mixtures of cationic and zwitterionic surfactants. These forces are used to determine the adsorption of the surfactant as a function of the separation between the interfaces (proximal adsorption) through the application of a Maxwell relation. In the absence of cationic surfactant, the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS) undergoes little adsorption to glass at concentrations up to about 2/3 critical micelle concentration (cmc). In addition, DDAPS does not have much effect on the forces over the same concentration range. In contrast, the cationic surfactant dodecylpyridinium chloride (DPC) does adsorb to glass and does affect the force between glass surfaces at concentrations much lower than the cmc. In the presence of a small amount of DPC (0.05 mM = cmc/300), the net force between the glass surfaces is quite sensitive to the solution concentration of DDAPS. A model-independent thermodynamic argument is used to show that the surface excess of DDAPS depends on the separation between the glass interfaces when the cationic surfactant is present and that the surface excess of the cationic surfactant is more sensitive to interfacial separation in the presence of the zwitterionic surfactant. The change in adsorption of the zwitterionic surfactant is explained in terms of an intermolecular coupling between the long-range electrostatic force acting on the cationic surfactant and the short-range hydrophobic interaction between the alkyl chains on the cationic and zwitterionic surfactants. The adsorptions of cationic and zwitterionic surfactants in mixtures were measured independently and simultaneously by attenuated total internal reflection infrared spectroscopy (ATR-IR). The adsorption of the zwitterionic surfactant is enhanced by the presence of a small amount of cationic surfactant.  相似文献   

3.
Pandey S  Acree WE  Cho BP  Fetzer JC 《Talanta》1997,44(3):413-421
Applicability of the nitromethane selective quenching rule for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is examined for 58 representative PAH solutes dissolved in micellar N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate and in micellar N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate solvent media. Results of measurements show that zwitterionic surfactants can be considered, for the most part, as providing a polar solubilizing media as far as the nitromethane selective quenching rule is concerned. Nonalternant PAHs that contain electron donating methoxy- and hydroxy-functional groups (and methyl-groups to a much lesser extent) are noted exceptions.  相似文献   

4.
The aqueous solutions of mixtures of various conventional surfactants and dimeric anionic and cationic surfactants have been investigated by electrical conductivity, spectrofluorometry, and time-resolved fluorescence quenching to determine the critical micelle concentrations and the micelle aggregation numbers in these mixtures. The following systems have been investigated: 12-2-12/DTAB, 12-2-12/C(12)E(6), 12-2-12/C(12)E(8), 12-3-12/C(12)E(8), Dim3/C(12)E(8), and Dim4/C(12)E(8) (12-2-12 and 12-3-12=dimethylene-1,2- and trimethylene-1,3-bis(dodecyldimethylammonium bromide), respectively; C(12)E(6) and C(12)E(8)=hexa- and octaethyleneglycol monododecylethers, respectively; Dim3 and Dim4=anionic dimeric surfactants of the disodium sulfonate type, Scheme 1; DTAB=dodecyltrimethylammonium bromide). For the sake of comparison the conventional surfactant mixtures DTAB/C(12)E(8) and SDS/C(12)E(8) (SDS=sodium dodecylsulfate) have also been investigated (reference systems). Synergism in micelle formation (presence of a minimum in the cmc vs composition plot) has been observed for the Dim4/C(12)E(8) mixture but not for other dimeric surfactant/nonionic surfactant mixtures investigated. The aggregation numbers of the mixed reference systems DTAB/C(12)E(8) and SDS/C(12)E(8) vary monotonously with composition from the value of the aggregation number of the pure C(12)E(8) to that of the pure ionic component. In contrast, the aggregation number of the dimeric surfactant/C(12)E(8) mixtures goes through a minimum at a low value of the dimeric surfactant mole fraction. This minimum does not appear to be correlated to the existence of synergism in micelle formation. The initial decrease of the aggregation number of the nonionic surfactant upon addition of ionic surfactant, up to a mole fraction of ionic surfactant of about 0.2 (in equivalent per total equivalent), depends little on the nature the surfactant, whether conventional or dimeric. The results also show that the microviscosity of the systems containing dimeric surfactants is larger than that of the reference systems. Copyright 2001 Academic Press.  相似文献   

5.
The rate of decarboxylation of 6-nitrobenzisoxazole-3-carboxylate, NBOC, was determined in micelles of N-hexadecyl-N,N,N-trimethylammonium bromide or chloride (CTAB or CTAC), N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS), N-dodecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (DPS), N-dodecyl-N,N,N-trimethylammonium bromide (DTAB), hexadecylphosphocholine (HPC), and their mixtures. Quantitative analysis of the effect on micelles on the velocity of NBOC decarboxylation allowed the estimation of the rate constants in the micellar pseudophase, k(m), for the pure surfactants and their mixtures. The extent of micellar catalysis for NBOC decarboxylation, expressed as the ratio k(m)/k(w), where k(w) is the rate constant in water, varied from 240 for HPS to 62 for HPC. With HPS or DPS, k(m) decreased linearly with CTAB(C) mole fraction, suggesting ideal mixing. With HPC, k(m) increased to a maximum at a CTAB(C) mole fraction of ca. 0.5 and then decreased at higher CTAB(C). Addition of CTAB(C) to HPC, where the negative charge of the surfactant is close to the hydrophobic core, produces tight ion pairs at the interface and, consequently, decreases interfacial water contents. Interfacial dehydration at the surface in equimolar HPC/CTAB(C) mixtures, and interfacial solubilization site of the substrate, can explain the observed catalytic synergy, since the rate of NBOC decarboxylation increases markedly with the decrease in hydrogen bonding to the carboxylate group.  相似文献   

6.
The use of mixtures of ionic and zwitterionic surfactants in poly(dimethylsiloxane) (PDMS) microchips is reported. The effect of surfactant concentration on electroosmotic flow (EOF) was studied for a single anionic surfactant (sodium dodecyl sulfate, SDS), a single zwitterionic surfactant (N-tetradecylammonium-N,N-dimethyl-3-ammonio-1-propanesulfonate, TDAPS), and a mixed SDS/TDAPS surfactant system. SDS increased the EOF as reported previously while TDAPS showed an initial increase in EOF followed by a reduction at higher concentrations. When TDAPS was added to a solution containing SDS, the EOF decreased in a concentration-dependent manner. The EOF for all three surfactant systems followed expected pH trends, with increasing EOF at higher pH. The mixed surfactant system allowed tuning of the EOF across a range of pH and concentration conditions. After establishing the EOF behavior, the adsorption/desorption kinetics were measured and showed a slower adsorption/desorption rate for TDAPS than SDS. Finally, the separation and electrochemical detection of model catecholamines in buffer and reduced glutathione in red blood cell lysate using the mixed surfactant system were explored. The mixed surfactant system provided shorter analysis times and/or improved resolution when compared to the single surfactant systems.  相似文献   

7.
研究了在高盐油藏中, 利用两性/阴离子表面活性剂的协同效应获得油水超低界面张力的方法. 两性表面活性剂十六烷基磺基甜菜碱与高盐矿化水具有很好的相容性, 但在表面活性剂浓度为0.07%-0.39%(质量分数)范围内仅能使油水界面张力达到10-2 mN·m-1量级, 加入阴离子表面活性剂十二烷基硫酸钠后则可与原油达到超低界面张力. 通过探讨表面活性剂总浓度、金属离子浓度、复配比例对油水动态界面张力的影响, 发现两性/阴离子表面活性剂混合体系可以在高矿化度、低浓度和0.04%-0.37%的宽浓度范围下获得10-5 mN·m-1量级的超低界面张力, 并分析了两性/阴离子表面活性剂间协同获得超低界面张力的机制.  相似文献   

8.
Electrochemical measurements, atomic force microscopy, and scanning tunneling microscopy have been combined to describe the electric-field-controlled surface aggregation of N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS), a model zwitterionic surfactant, at a Au(111) electrode surface. At concentrations below the critical micelle concentration (CMC), the monomer adsorbs and aggregates at the surface. The charge on the metal (sigmaM) controls the orientation of adsorbed molecules and consequently the film structure. At high negative (sigmaM < -5 microC cm-2) charge densities, a spongy, disordered film is formed in which the polar heads are turned toward the solution. At high positive (sigmaM > +5 microC cm-2) charge densities, a planar film with "blisters" is observed with the polar heads of DDAPS turned to the metal. Hemicylindrical aggregates are observed in the intermediate charge density range (-5 < sigmaM < +5 microC cm-2). At bulk concentrations higher than the CMC, micelles adsorb and the structure of these films is controlled by the fusion of the adsorbed micelles. STM and AFM images provided direct visualization of this field-driven surface aggregation of the zwitterionic surfactant.  相似文献   

9.
本文通过荧光光谱法、紫外-可见吸收光谱法和透射电镜并结合电导率测定分别研究了水中卵清蛋白与阴离子表面活性剂十二烷基硫酸钠(SDS)和阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)和十六烷基三甲基溴化铵(CTAB)之间的相互作用。研究结果表明卵清蛋白可以增加SDS和CTAB的临界胶束浓度,但对DTAB的临界胶束浓度没有影响。阴离子表面活性剂可以使卵清蛋白构象完全伸展,而阳离子表面活性剂却不具备此种作用。表面活性剂单体与卵清蛋白的相互作用强于表面活性剂胶束与卵清蛋白的相互作用。  相似文献   

10.
The pyrene fluorescence measurements have been carried out for the micelle formation of sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and dimethylene bis(dodecyldimethylammonium bromide) (12-2-12) in the presence of fixed different amounts of various generations of poly(amidoamine) (PAMAM). The critical micelle concentration (cmc) of SDS decreases with an increase in the fixed amount of PAMAM, suggesting the facilitation of micellization due to the participation of SDS-PAMAM complex in the micelle formation. This behavior has not been observed for DTAB/12-2-12 in the presence of various generations of PAMAM. The results indicate that SDS always has stronger interactions with all the generations of PAMAM in comparison to those of DTAB and 12-2-12.  相似文献   

11.
Mixtures of Zn(II) and 8-hydroxyquinoline (8QOH) in a 1:2 proportion, in aqueous solutions, result in fast complexation, followed by precipitation. Addition of 0.05 M sodium dodecyl sulfate (SDS), N-dodecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-12), N-hexadecyl-N,N-dimethylammonio-1-propanesulfonate (SB3-16) or Triton X-100 results in considerable retardation of precipitation. In the presence of SDS, SB3-12, SB3-16 and Triton X-100 the 8QOH chelates are only kinetically stable in solution and after 24 h, the precipitation is almost quantitative. Conversely, upon addition of the cationic surfactant hexadecyltrimethylammonium bromide (CTABr), the absorbance of the complex remains constant even after at least six months. The interaction of the ligand 8QOH (and of the (8QO)(2)Zn(II) complex) with the cationic surfactant was studied by ultraviolet and NMR spectroscopy and 8QOH has a pK(a)=9.05 in the presence of the cationic surfactant and the ligand intercalates in the micelle, being preferentially located near the headgroup of the micelle. Although the solubilization site of the (8QO)(2)Zn(II) complex is similar to that of 8QOH, the interaction of the aromatic moiety with the CTA(+) headgroup is much stronger, due to the increased electron density in the aromatic ring of the ligand. As a consequence of this interaction, sphere to rod transition and an increase in microscopic and macroscopic viscosity are observed.  相似文献   

12.
Modifying properties of aqueous surfactant solutions by addition of external additives is an important area of research. Unusual properties of ionic liquids (ILs) make them ideal candidates for this purpose. Changes in important physicochemical properties of aqueous zwitterionic N-dodecyl- N, N-dimethyl-3-ammonio-1-propanesulfonate (SB-12) surfactant solution upon addition of hydrophilic IL 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF 4], are reported. Dynamic light scattering results indicate a dramatic reduction in the average micellar size in the presence of [bmim][BF 4]; micellar (or micelle-like) aggregation in the presence of as high as 30 wt % [bmim][BF 4] is confirmed. Responses from fluorescence probes are used to obtain critical micelle concentration (cmc), aggregation number ( N agg), and dipolarity and microfluidity of the micellar pseudophase of aqueous SB-12 in the presence of [bmim][BF 4]. In general, increasing the amount of [bmim][BF 4] to 30 wt % results in decrease in N agg and increase in cmc. Increase in the dipolarity and the microfluidity of the probe cybotactic region within the micellar pseudophase is observed on increasing [bmim][BF 4] concentration in the solution. It is attributed to increased water penetration into the micellar pseudophase as [bmim][BF 4] is added to aqueous SB-12. It is proposed that IL [bmim][BF 4] behaves similar to an electrolyte and/or a cosurfactant when present at low concentrations and as a polar cosolvent when present at high concentrations. Electrostatic attraction between cation of IL and anion of zwitterion, and anion of IL and cation of zwitterion at low concentrations of [bmim][BF 4] is evoked to explain the observed changes. Presence of IL as cosolvent appears to reduce the efficiency of micellization process by reducing the hydrophobic effect.  相似文献   

13.
The interactions of conventional cationic, i.e. dodecyl-(DTAB), tetradecyl-(TTAB), and hexadecyltrimethylammonium bromides (HTAB), and dimeric cationic surfactants, i.e. dimethylene bis decyl-(10-2-10), and dodecyldimethylammonium bromides (12-2-12) with anionic polyelectrolytes, were studied by fluorescence measurements. The variation of I1/I3 ratio of the fluorescence of pyrene in aqueous solutions of polyelectrolytes was measured as a function of surfactant concentration. A three-step aggregation process involving the critical aggregation concentration (cac) and critical micelle concentration (cmc) was observed in each case. The cationic surfactants with lower hydrophobicity demonstrated higher degree of binding and vice versa.  相似文献   

14.
The polymerization of acrylamide in mixed micellar solutions of surfactants, initiated by NaHSO3 has been studied at 20 and 3Q° C with time variable method of thermokinetics for 1. 5-order reaction. The results indicate that the mixed micellar systems of cationic or anionic with zwitterionic surfactants (SLS/ CTAB, SLS/ TTAB, SLS/ SDS) and cationic with nonionic surfactants (Brij 357sol; CTAB, Bri-J35/TTAB, Brij35/ DTAB) have catalytic effect on the polymerization in the order, at 20° C. SLS/ SDS SLS/ TTAB SLS/ CTAB Brij35/ CTAB at 30° C SLS/ SDS SLS/ TTAB≈ / CTAB Bri-j35/ DTAB= sBrij35/ TTAB as Brij35/ CTAB, while Brij35/ SDS mixed micellar system has inhibition. These effects are attributed to the effect of the Stern layer of mixed micelles on the step of initiator (HSOT) to form free radical.  相似文献   

15.
The interactions between oppositely charged surfactant-polymer systems have been studied using surface tension and conductivity measurements and the dependence of aggregation phenomenon over the polyelectrolyte concentration and chain length of cationic ATAB surfactants, cetyltrimethyl ammonium bromide (CTAB), tetradecyltrimethyl ammonium bromide (TTAB), and dodecyltrimethyl ammonium bromide (DTAB) have been investigated. It was observed that cationic surfactants induce cooperative binding with anionic polyelectrolyte at critical aggregation concentration (cac). The cac values of ATAB surfactants in the presence of anionic polyelectrolyte, sodium carboxy methyl cellulose (NaCMC), are considerably lower than their critical micelle concentration (cmc). After the complete complexation, free micelles are formed at the apparent critical micelle concentration (acmc), which is slightly higher in polyelectrolyte aqueous solution than in pure water. Among the cationic surfactants (i.e., CTAB, TTAB, and DTAB), DTAB was found to have least interaction with NaCMC. Surfactants with longer tail size strongly favor the interaction, indicating the dependence of aggregation phenomenon on the structure, morphology, and tail length of the surfactant.   相似文献   

16.
In this paper we present the first results of enzymatic activities in a reverse microemulsion medium based on a mixture of an anionic and a cationic surfactant, called catanionic microemulsion. The studied system is composed of sodium dodecyl sulfate (SDS)/dodecyltrimethylammonium bromide (DTAB)/n-hexanol/citrate buffer/n-dodecane, with high SDS/(SDS + DTAB) weight fractions. It turns out that the results are similar to those obtained in classical reverse microemulsions, except that the presence of DTAB exerts an inhibiting effect on the enzyme. Nevertheless, enzymatic superactivities are found even at a DTAB to total surfactant ratio of 15%, corresponding to 3% weight fraction of cationic surfactant in the microemulsion. The influence of pH and hexanol content on the enzymatic activities is also studied.  相似文献   

17.
The spontaneous hydrolysis of phenyl chloroformate was studied in water-ethylene glycol, EG, cationic, zwitterionic, nonionic, and anionic micellar solutions, the surfactants being tetradecyltrimethylammonium bromide, tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, tricosaoxyethylene glycol ether, and sodium dodecyl sulfate. The dependence of the observed rate constant on surfactant concentration as well as on the percentage by weight of EG, varying from 0 to 50 wt %, was investigated. Information about changes in the critical micelle concentrations, in the micellar ionization degrees (for ionic surfactants), in the aggregation numbers, and in the polarity of the interfacial region of the micelles upon changing the weight percent of EG was obtained through conductivity, surface tension, spectroscopic, and fluorescence measurements. A simple pseudophase model was adequate to rationalize the kinetic data. Micellar medium effects were explained by considering charge-charge interactions and polarity, ionic strength, and water content in the micellar interfacial region. The acceleration of the reaction produced by an increase in the amount of EG present in the mixture was explained on the basis of the substantial decrease in the equilibrium binding constant of phenyl chloroformate molecules to the micelles, resulting in the contribution of the reaction taking place in the bulk water-EG phase being more important. The weight percent of EG did not substantially influence the rate constant in the micellar pseudophase.  相似文献   

18.
The behavior of the mixed amphiphilic drug promethazine hydrochloride(PMT) and cationic as well as nonionic surfactants was studied by tensiometry.The cmc values of the PMT-surfactant systems decrease at a surfactant mole fraction of 0.1 and it then becomes constant.The critical micelle concentration(cmc) values are lower than the ideal cmc(cmc*) values for PMT/TX-100,PMT/TX-114,PMT/Tween 20,and PMT/Tween 60 systems.For the PMT/Tween 40,PMT/Tween 80,PMT/CPC,and PMT/CPB systems the cmc values are close to the cmc* values.This indicates that PMT forms mixed micelles with these surfactants by attractive interactions.The surface excess(Γmax) decreases in the presence of surfactants.The rigid structure of the drug makes adsorption easier and the contribution of the surfactant at the interface decreases.The interaction parameters βm(for the mixed micelles) and βσ(for the mixed monolayer) are negative indicating attraction among the mixed components.  相似文献   

19.
The interaction of a cationic water-soluble porphyrin, 5,10,15,20-tetrakis [4-(3-pyridiniumpropoxy)phenyl]porphyrin tetrakisbromide (TPPOC3Py), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution has been studied by means of UV-vis, (1)H NMR, fluorescence, circular dichroism (CD) spectra and dynamic laser light scattering (DLLS), and it reveals that TPPOC3Py forms porphyrin-surfactant complexes (aggregates), including ordered structures J- and H-aggregates, induced by association with surfactant monomers below the SDS critical micelle concentration (cmc), and forms micellized monomer upon the cmc, respectively. The position of TPPOC3Py in the micelle is determined, which is not in the micelle core instead of intercalated among the SDS chains, most likely with the pyridinium group extending into the polar headgroup region of the micelle.  相似文献   

20.
The properties of quaternary ammonium salt-type cationic trimeric surfactants (m-2-m-2-m, m represents the carbon atom number in alkyl chain lengths of 8, 10, and 12) and oppositely charged anionic monomeric surfactant, sodium n-octyl sulfate (SOS), were characterized by employing several techniques such as static surface tension, fluorescence spectroscopy, and dynamic light-scattering measurements. The critical micelle concentrations (cmc) of m-2-m-2-m were much lower than those of the corresponding dimeric and monomeric surfactants, and decreased with increasing chain length. The addition of SOS to m-2-m-2-m solutions resulted in a further decrease of the cmc. The mixed surfactants showed higher efficiencies in lowering the surface tension than the individual surfactants. The fluorescence measurements suggested the formation of mixed micelles with a hydrophobic environment in the solutions even at lower concentrations. The dynamic light-scattering study indicated the presence of two different kinds of aggregates with different hydrodynamic diameters. The larger one was attributed to the mixed micelle of m-2-m-2-m and SOS. These results indicated a decline of the electrostatic repulsion between cationic head groups through the incorporation of anionic surfactant into the mixed surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号