首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Dupal 《PAMM》2003,2(1):58-59
The mathematical model of the primary circuit of a nuclear power plant VVER 420/213 has been developed. The aim of modelling is a vibration analysis and parameter optimization leading to the decrease of velocity and stress amplitudes of the circuit components. For an assemblage of the mathematical model of the whole primary circuit the modal synthesis method with significant DOF reduction is used.  相似文献   

2.
This paper deals with the mathematical modeling of a water power plant. For the modeling procedure the plant was divided into logical parts and for each of these parts an appropriate mathematical model was developed. The interconnection of the different models is done by their common boundary conditions. The model also has to deal with a special type of an intersection between an open channel and a pipe flow. With suitable assumptions it is possible to simplify the model for this special kind of flow significantly. Finally, measurement results show the feasibility of the proposed assumptions for this plant.  相似文献   

3.
This paper presents a method for short-term generation schedulingin a multiplereservoir river system. The reservoir dynamicsare described using the network flow balance equations, takinginto account the time delays of water travelling from one reservoirto the next. The generating characteristics of a hydropowerplant are represented by a linear model which depends upon thenumber of generators committed. Nonlinear head effects on systemgeneration are included. Since the power function depends onthe number of generators committed at any given time, we obtaina mixed integer-real LP problem. This is solved by using MINOS,a well developed LP package for real large-scale mathematicalprogramming problems, together with a specially designed heuristicscheme for finding the integer number of generators committedin a plant at a particular time step. The scheme is evaluatedby examining several case studies.  相似文献   

4.
This paper considers the problem of short-term optimal operation of nuclear-hydro-thermal electric power systems. The solution is obtained by use of a functional analytic optimization technique that employs the minimum norm formulation.A power system with an arbitrary number of generating stations is considered. The limited flexibility exhibited by the thermal nuclear reactors, when operating in a load-following mode, is accounted for by means of a model of the xenon concentration in their cores. The nonlinear effects induced by trapezoidal water reservoirs and the time delay of the water flow between upstream and downstream hydroplants is taken into consideration as well.A two-level iterative scheme of the feasible type is proposed for implementing the optimal solution.This work was supported in part by the National Research Council of Canada, Grant No. A-4146.  相似文献   

5.
The nature of the processes taking place in a nuclear power plant (NPP) steam turbine is the reason why their modeling is very difficult, especially when the model is intended to be used for on-line optimal model based process control over a wide range of operating conditions, caused by changing electrical power demand e.g. when combined heat and power mode of work is utilized. The paper presents three nonlinear models of NPP steam turbine, which are: the static model, and two dynamic versions, detailed and simplified. As the input variables, the models use the valve opening degree and the steam flow properties: mass flow rate, pressure and temperature. The models enable to get access to many internal variables describing process within the turbine. They can be treated as the output or state variables. In order to verify and validate the models, data from the WWER-440/213 reactor and the 4 CK 465 turbine were utilized as the benchmark. The performed simulations have shown good accordance of the static and dynamic models with the benchmark data in steady state conditions. The dynamic models also demonstrated good behavior in transient conditions. The models were analyzed in terms of computational load and accuracy over a wide range of varying inputs and for different numerical calculation parameters, especially time step values. It was found that the detailed dynamic model, due to its complexity and the resultant long calculation time, is not applicable in advanced control methods, e.g. model predictive control. However, the introduced simplifications significantly decreased the computational load, which enables to use the simplified model for on-line control.  相似文献   

6.
This paper first presents the Hopf bifurcation phenomena of a vector-controlled doubly fed induction generator (DFIG) which is a competitive choice in wind power industry. Using three-phase back-to-back pulse-width-modulated (PWM) converters, DFIG can keep stator frequency constant under variable rotor speed and provide independent control of active and reactive power output. Main results are illustrated by “exact” cycle-by-cycle simulations. The detailed mathematical model of the closed-loop system is derived and used to analyze the observed bifurcation phenomena. The loci of the Jacobian’s eigenvalues are computed and the analysis shows that the system loses stability via a Hopf bifurcation. Moreover, the boundaries of Hopf bifurcation are also given to facilitate the selection of practical parameters for guaranteeing stable operation.  相似文献   

7.
This article presents a mathematical model of a complete diesel-electric propulsion system, including components as diesel generators, distribution network, variable speed thruster-drives, and conventional motor loads. The model is split into two parts: One power generating part where the load is specified with an aggregated active and reactive power load demand. Secondly, a power consumption part where the effects of the different load types as thruster drives, motors and other loads are modelled. The model is written in a state-space form suitable for the purpose of simulation and control design. PID-controllers represent speed governors and automatic voltage regulators.  相似文献   

8.
Power system transient stability is one of the most challenging technical areas in electric power industry. Thyristor-controlled series compensation (TCSC) is expected to improve transient stability and damp power oscillations. TCSC control in power system transients is a nonlinear control problem. This paper presents a T–S-model-based fuzzy control scheme and a systematic design method for the TCSC fuzzy controller. The nonlinear power system containing TCSC is modelled as a fuzzy “blending” of a set of locally linearized models. A linear optimal control is designed for each local linear model. Different control requirements at different stages during power system transients can be considered in deriving the linear control rules. The resulting fuzzy controller is then a fuzzy “blending” of these linear controllers. Quadratic stability of the overall nonlinear controlled system can be checked and ensured using H control theory. Digital simulation with NETOMAC software has verified that the fuzzy control scheme can improve power system transient stability and damp power swings very quickly.  相似文献   

9.
The goal in many fault detection and isolation schemes is to increase the isolation and identification speed. This paper, presents a new approach of a nonlinear model based adaptive observer method, for detection, isolation and identification of actuator and sensor faults. Firstly, we will design a new method for the actuator fault problem where, after the fault detection and before the fault isolation, we will try to estimate the output of the instrument. The method is based on the formation of nonlinear observer banks where each bank isolates each actuator fault. Secondly, for the sensor problem we will reformulate the system by introducing a new state variable, so that an augmented system can be constructed to treat sensor faults as actuator faults. A method based on the design of an adaptive observers’ bank will be used for the fault treatment. These approaches use the system model and the outputs of the adaptive observers to generate residues. Residuals are defined in such way to isolate the faulty instrument after detecting the fault occurrence. The advantages of these methods are that we can treat not only single actuator and sensor faults but also multiple faults, more over the isolation time has been decreased. In this study, we consider that only abrupt faults in the system can occur. The validity of the methods will be tested firstly in simulation by using a nonlinear model of waste water treatment process with and without measurement noise and secondly with the same nonlinear model but by using this time real data.  相似文献   

10.
依据相关光谱式红外气体传感器检测原理,以系统中红外光与气体反应的气室为研究对象,利用光学设计专用软件Tracepro对理想红外朗伯光源在不同反射镜类型下光源的最佳位置进行了仿真分析;通过建立光路传输系统的数学模型,对气室不同结构尺寸下的光功率输出、以及气室内壁反射率对传感系统性能的影响进行了仿真与优化.在理论模型的基础上,根据仿真结果,确定了最佳气室模型的参数组合.实验结果表明,通过对气室中红外光源的位置、反射镜类型、气室长度等部分进行适当的优化修改后,可使探测器接收信号幅度得到明显提高,将有利于后级电路的信号放大、数模转换等处理过程,从而提高气体浓度检测的灵敏度和精度.  相似文献   

11.
This paper presents a chattering problem which arises in a dynamic mathematical two-phase flow model. The real system under study is also introduced, the DISS test facility, a parabolic-trough solar thermal power plant. The heat transfer fluid in the DISS facility is the steam-water mixture. A dynamic model of this plant, using Modelica as the modeling language, was previously developed in order to study its behavior. Chattering arises in the pipe model reducing the computational performance and hence limiting the applicability of the model. The problem source is studied and analysed together with an approach to the problem which is based on the smooth interpolation of some thermodynamic properties.  相似文献   

12.
In order to explore the capability of a solid–liquid phase change material (PCM) for cooling electronic or heat storage applications, melting of a PCM in a vertical rectangular enclosure was studied. Three protruding generating heat sources are attached on one of the vertical walls of the enclosure, and generating heat at a constant and uniform volumetric rate. The horizontal walls are adiabatic. The power generated in heat sources is dissipated in PCM (n-eicosane with the melting temperature, Tm = 36 °C) that filled the rectangular enclosure. The advantage of using PCM is that it is able to absorb high amount of heat generated by heat sources due to its relatively high energy density. To investigate the thermal behaviour and thermal performance of the proposed system, a mathematical model based on the mass, momentum and energy conservation equations was developed. The governing equations are next discretised using a control volume approach in a staggered mesh and a pressure correction equation method is employed for the pressure–velocity coupling. The PCM energy equation is solved using the enthalpy method. The solid regions (wall and heat sources) are treated as fluid regions with infinite viscosity and the thermal coupling between solid and fluid regions is taken into account using the harmonic mean of the thermal conductivity method. The dimensionless independent parameters that govern the thermal behaviour of the system were next identified. After validating the proposed mathematical model against experimental data, a numerical investigation was next conducted in order to examine the thermal behaviour of the system by analyzing the flow structure and the heat transfer during the melting process, for a given values of governing parameters.  相似文献   

13.
The huge and complicated plants such as nuclear power stations are likely to cause the operators to make mistakes due to a variety of inexplicable reasons and symptoms in case of emergency. That’s why the prevention system assisting the operators is being developed for. First of all, I suggest an improved fuzzy diagnosis. Secondly, I want to demonstrate that a classification system of nuclear plant’s accident investigating the causes of accidents foresees possible problems, and maintains the reliability of the diagnostic reports in spite of improper working in part. In the event of emergency in a nuclear plant, a lot of operational steps enable the operators to find out what caused the problems based on an emergent operating plan. Our system is able to classify their types within twenty to thirty seconds. As so, we expect the system to put down the accidents right after the rapid detection of the damage control-method concerned.  相似文献   

14.
根据高寒地区河流结冰时,河道冰情监测点垂直柱面内空气、冰与水三种介质所表现出的不同温度特性,设计了基于DS18820温度传感器的高显示分辨率冰层温度梯度一厚度自动化检测传感器,传感器内部采用单总线结构,通过MSP430单片机的控制实现了温度梯度各监测点的数字化数据采集,使传感器具有结构简单、功耗低、抗干扰能力强等优点.将新型传感器安装在内蒙古三湖口黄河河道并进行了连续两个月的现场冰情数据采集试验,传感器获得了黄河河道监测点系统的温度梯度数据.通过对采集获得的冰层温度梯度数据的进一步分析,可以全面掌握河道冰层变化的状况,实验结果表明这一新的冰层温度梯度一厚度传感器是一种更加适应于工程应用的冰情检测设备.  相似文献   

15.
开都河——孔雀河流域水资源综合利用优化管理模型   总被引:1,自引:0,他引:1  
根据开都河——孔雀河流域水资源系统的特点 ,从系统分析的角度出发 ,综合考虑水利 ,水电及生态环境保护工程效益 ,提出了一个多目标优化管理模型 .该模型能模拟实际系统的运行 ,还具有良好的扩展性 ,为科学治理保护开都河——孔雀河流域提供了可靠的科学依据 .  相似文献   

16.
The “two-fluid” mathematical model for turbulent combustion is applied to a one-dimensional, premixed, stabilized ducted flame. The flame is assumed to consist of two interspersed fluids (“reactants” and “products”), each characterized by its own properties and interacting through the exchange of mass, heat, and momentum. The distributions of pressure, densities, velocities, and volume fractions across the duct were successfully simulated. From a parametric study on the effects of the empirical constants involved in the interfluid relations, the significant dependence of the system on the parameters that characterize the mass transfer rate and the relative effect of mass transfer to momentum transfer was confirmed. The application of the model to transient states proved its ability to predict system oscillations.  相似文献   

17.
A mathematical model is used to simulate the water current and the elevation in a uniform reservoir. A non-linear hydrodynamic model that provides the velocity field and elevation of the water flow is considered. In the simulating process, the Lax–Wendroff technique is used to approximate the solutions. The numerical solution can be the input data for a water-quality model that is applicable for the optimal control of water treatment in the system to achieve minimum cost.  相似文献   

18.
This work contributes to the study of nuclear plant thermal discharges in coastal areas by using a numerical model which solves the Navier-Stokes-Reynolds equations for shallow waters and the energy equation for computing temperature variations. The numerical model takes into account the heat flux given in the upper layer, where the free surface and the atmosphere interact. In this study, the thermal plume dispersion from the nuclear power plant Laguna Verde, Veracruz, Mexico, is analyzed. Bathymetry, oceanographic, meteorological, hydrologic and plant operating data are used to run numerical simulations. The results are compared against observed data showing good agreement. The Nash-Suffle's criterion is also applied to verify the quality of the numerical solution obtaining suitable results.  相似文献   

19.
Designing a robust sensor network to detect accidental contaminants in water distribution systems is a challenge given the uncertain nature of the contamination events (what, how much, when, where and for how long) and the dynamic nature of water distribution systems (driven by the random consumption of consumers). We formulate a set of scenario-based minimax and minimax regret models in order to provide robust sensor-placement schemes that perform well under all realizable contamination scenarios, and thus protect water consumers. Single-and multi-objective versions of these models are then applied to a real water distribution system. A heuristic solution method is applied to solve the robust models. The concept of “sensitivity region” is used to visualize trade-offs between multiple objectives.  相似文献   

20.
We interpret and explain a phenomenon in short-term swing dynamics of multi-machine power grids that we term the Coherent Swing Instability (CSI). This is an undesirable and emergent phenomenon of synchronous machines in a power grid, in which most of the machines in a sub-grid coherently lose synchronism with the rest of the grid after being subjected to a finite disturbance. We develop a minimal mathematical model of CSI for synchronous machines that are strongly coupled in a loop transmission network and weakly connected to the infinite bus. This model provides a dynamical origin of CSI: it is related to the escape from a potential well, or, more precisely, to exit across a separatrix in the dynamical system for the amplitude of the weak nonlinear mode that governs the collective motion of the machines. The linear oscillations between strongly coupled machines then act as perturbations on the nonlinear mode. Thus we reveal how the three different mode oscillations??local plant, inter-machine, and inter-area modes??interact to destabilize a power grid. Furthermore, we present a phenomenon of short-term swing dynamics in the New England (NE) 39-bus test system, which is a well-known benchmark model for power grid stability studies. Using a partial linearization of the nonlinear swing equations and the proper orthonormal decomposition, we show that CSI occurs in the NE test system, because it is a dynamical system with a nonlinear mode that is weak relative to the linear oscillatory modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号