首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although capillary electrophoresis (CE) with photometric detection is a well-established technique for the determination of various inorganic ions, its limited sensitivity has hindered greater development in this area. In this work, we used a mixture of metals consisting of Co(II), Ni(II), Zn(II) and Mn(II) to demonstrate that the sensitivity of CE with ultraviolet–visible (UV–vis) detection can be improved by using chromogenic reagents such as porphyrins. To this end, the metals were reacted with 5,10,15,20-tetrakis(4-sulphophenyl)-porphine dodecahydrate (TPPS4) to obtain their respective porphyrinato complexes, which were then separated by CE with a citrate buffer and detected at 410 nm. The ensuing electrophoretic method has a limit of detection (LOD) of 3 × 10−6 M (180 μg L−1) for Co(II), 2 × 10−10 M (0.012 μg L−1) for Ni(II), 4 × 10−6 M (260 μg L−1) for Zn(II) and 4 × 10−9 M (0.219 μg L−1) for Mn(II). The method is a highly promising choice for the ultratrace determination of Ni(II) and Mn(II).  相似文献   

2.
As a highly conserved damage repair protein, UDG excises uracil bases through its glycosylase activity. We report here an alternative fluorescence method for UDG assay with high accuracy and sensitivity by applying uracil-modified molecular beacons as substrates. The detection limit of UDG is 0.005 U mL−1. The KM and kcat are 0.89 ± 0.1 μM and 210 ± 10 min−1, respectively. The method is applied to screening inhibitors and the results indicate that both of the 5-FU and cisplatin can inhibit UDG activity with the IC50 values of 6.1 ± 0.52 mM and 3.2 ± 0.24 mM, respectively. Furthermore, the combination of uracil-modified molecular beacons and nuclease inhibitor makes the new method possible to specifically detect UDG activity in cell-free extracts and serum. Taken together, the simple, rapid and sensitive method has potential relevance for a variety of applications, such as molecular diagnosis and screening of UDG inhibitors.  相似文献   

3.
In this article, we present a systematic study on IgG and Fab fragment of anti-IgG molecules using fluorescence auto- and cross-correlation spectroscopy to investigate their diffusion characteristics, binding kinetics, and the effect of small organic molecule, urea on their binding. Through our analysis, we found that the diffusion coefficient for IgG and Fab fragment of anti-IgG molecules were 37 ± 2 μm2 s−1 and 56 ± 2 μm2 s−1, respectively. From the binding kinetics study, the respective forward (ka) and backward (kd) reaction rates were (5.25 ± 0.25) × 106 M−1 s−1 and 0.08 ± 0.005 s−1, respectively and the corresponding dissociation binding constant (KD) was 15 ± 2 nM. We also found that urea inhibits the binding of these molecules at 4 M concentration due to denaturation.  相似文献   

4.
In this work, we utilized polyethyleneimine-capped silver nanoclusters (PEI-Ag nanoclusters) to develop a new fluorometric method for the determination of hydrogen peroxide and glucose with high sensitivity. The PEI-Ag nanoclusters have an average size of 2 nm and show a blue emission at 455 nm. The photostable properties of the PEI-Ag nanoclusters were examined. The fluorescence of the PEI-Ag nanoclusters could be particularly quenched by H2O2. The oxidization of glucose by glucose oxidase coupled with the fluorescence quenching of PEI-Ag nanoclusters by H2O2 can be used to detect glucose. Under optimum conditions, the fluorescence intensity quenched linearly in the range of 500 nM–100 μM with high sensitivity. The detection limit for H2O2 was 400 nM. And a linear correlation was established between fluorescence intensity (F0 − F) and concentration of glucose in the range of 1.0 × 10−6 to 1.0 × 10−5 M and 1.0 × 10−5 to 1.0 × 10−3 M with a detection limit of 8.0 × 10−7 M. The method was used for the detection of glucose in human serum samples with satisfactory results. Furthermore, the mechanism of sensitive fluorescence quenching response of Ag nanoclusters to glucose and H2O2 has been discussed.  相似文献   

5.
In this contribution, a novel method is described for the determination of platinum metals. The procedure developed employs a carbon paste electrode modified in situ with cationic surfactants of the quaternary ammonium salt type. The pre-concentration step is based on a specific accumulation mechanism involving ion-pair formation; the detection being performed by cathodic scanning in the differential pulse voltammetric mode. Regarding the individual forms of platinum metals, the method has been found convenient for the determination of three heavy platinum metals in the form of Pt(IV), Ir(III) and Os(IV), whereas for the remaining elements (Ru, Rh, and Pd) was almost inapplicable. Platinum metals of the former group can be pre-concentrated in chloride-containing supporting media via PtCl62−, IrCl63− and OsCl62− complex anions, the central atom of each species being fairly reducible during the voltammetric scan. Stripping signals for both platinum and iridium were proportional to the concentration in a range of 1-10 × 10−6 M Pt(IV) and Ir(III); the response for osmium being linear within 0.1-6 × 10−7 M Os(IV) with a detection limit of about 5 × 10−9 mol l−1. During optimisation, special attention was paid to the accumulation mechanism, choice of key experimental conditions, and to interference effects from foreign ions with potentially ion-pairing capabilities (AuCl4, TlCl4, CrO42−, MnO4, SCN, and I). The method elaborated has been tested on both model solutions and real samples of industrial waste water, showing in both cases satisfactory analytical performance.  相似文献   

6.
The hydrogen peroxide-oxidation of o-phenylenediamine (OPD) catalyzed by horseradish peroxidase (HRP) at 37 °C in 50 mM phosphate buffer (pH 7.0) was studied by calorimetry. The apparent molar reaction enthalpy with respect to OPD and hydrogen peroxide were −447 ± 8 kJ mol−1 and −298 ± 9 kJ mol−1, respectively. Oxidation of OPD by H2O2 catalyzed by HRP (1.25 nM) at pH 7.0 and 37 °C follows a ping-pong mechanism. The maximum rate Vmax (0.91 ± 0.05 μM s−1), Michaelis constant for OPD Km,S (51 ± 3 μM), Michaelis constant for hydrogen peroxide Km,H2O2 (136 ± 8 μM), the catalytic constant kcat (364 ± 18 s−1) and the second-order rate constants k+1 = (2.7 ± 0.3) × 106 M−1 s−1 and k+5 = (7.1 ± 0.8) × 106 M−1 s−1 were obtained by the initial rate method.  相似文献   

7.
Sulphur containing compounds such as sodium thiosulphate (STS) and thioglycolic acid (TGA) inhibit the rate of cyanide substitution by nitroso-R-salt (NRS) in hexacyanoruthenate(II) catalysed by Hg(II) ions due to their strong binding tendencies with Hg(II) catalyst. This inhibitory effect of sodium thiosulphate and thioglycolic acid is used as the basis for their determination at micro levels. The reaction was followed spectrophotometrically at 525 nm (λmax of [Ru(CN)5NRS]3− complex) under optimised reaction conditions at 8.75 × 10− 5 M [Ru(CN)64−], 3.50 × 10− 4 M [NRS], pH 7.00 ± 0.02, ionic strength (µ) 0.1 M (KCl) and temp 45.0 ±0.1 °C. The modified mechanistic scheme is proposed to understand the inhibition caused by sulphur containing compounds (STS and TGA) on Hg(II) catalysed substitution of cyanide by NRS in [Ru(CN)6]4−. The range of analytical concentration of inhibitor depends upon two factors; the amount of Hg(II) catalyst present in the indicator reaction and the stability of the Hg(II)-inhibitor complex under consideration. Under optimum conditions STS and TGA have been determined in the range of 0.98-7.0 × 10− 6 M and 0.30-7.0 × 10− 6 M. The detection limits for STS and TGA were found to be 3.0 × 10− 7 M and 1.0 × 10− 7 M respectively.  相似文献   

8.
A bismuth bulk electrode (BiBE) has been investigated as an alternative electrode for the anodic stripping voltammetric (ASV) analysis of Pb(II), Cd(II), and Zn(II). The BiBE, which is fabricated in-house, shows results comparable to those of similar analyses at other Bi-based electrodes. Metal accumulation is achieved by holding the electrode potential at −1.4 V (vs. Ag/AgCl) for 180 s followed by a square wave voltammetric stripping scan from −1.4 to −0.35 V. Calibration plots are obtained for all three metals, individually and simultaneously, in the10-100 μg L−1 range, with a detection limit of 93, 54, and 396 ng L−1 for Pb(II), Cd(II), Zn(II), respectively. A slight reduction in slope is observed for Cd(II) and Pb(II) when the three metals are calibrated simultaneously vs. individually. Comparing the sensitivities of the metals when calibrated individually vs. in a mixture reveals that Zn(II) is not affected by stripping in a mixture. However, Pb(II) and Cd(II) have decreasing sensitivities in a mixture. The optimized method has been successfully used to test contaminated river water by standard addition. The results demonstrate the ability of the BiBE as an alternative electrode material in heavy metal analysis.  相似文献   

9.
Mn(II)-sodium dodecyl sulphate complex (Mn(II)-SDS) is used to mimic the active group of peroxidase. The catalytic characteristic of this mimic enzyme catalyst in the oxidation reaction of fluorescence substrate, tetraethyldiaminoxanthyl chloride (Pyronine B (PB)), with hydrogen peroxide has been studied. The experimental results show that Mn(II)-SDS complex has similar catalytic activity that of peroxidase. The steady-state catalytic rate depends upon mimic enzyme and substrate concentrations, and the Michaelis-Menten parameters Km, Vmax and Kcat are 7.6×10−6 M, 7.9×10−7 M s−1 and 7.9 s−1, respectively. The catalytic activity of Mn(II)-SDS complex is compared with those of HRP and Hemin. Though the catalytic activity of Mn(II)-SDS complex is 15.9% of that of HRP, it can catalyze the oxidation reaction of PB with hydrogen peroxide lead to fluorescence quenching of PB. Under optimum conditions, linear relationship between fluorescence quenching F0/F and concentration of H2O2 is in the range of (0.0-3.6) × 10−7 M. The detection limit is determined to be 3.0×10−9 M. By coupling this mimic catalytic reaction with the catalytic reaction of glucose oxidase (GOD), glucose can be detected. Linear relationship between F0/F and concentration of glucose is in the range of (0.0-1.4) × 10−7 M. The detection limit is determined to be 4.2×10−9 M. This method is applied to the determination of glucose in human serum and the results are in good agreement with the phenol-4-aminoantipyrine (4-AAP).  相似文献   

10.
Bakir M  Green O  Gyles C  Mangaro B  Porter R 《Talanta》2004,62(4):781-789
The compound di-2-thienyl ketone p-nitrophenylhydrazone (DSKNPH) melting point 168-170 °C was isolated in good yield from the reaction between di-2-thienyl ketone (DSK) and p-nitrophenylhydrazine in refluxing ethanol containing a few drop of concentrated HCl. Nuclear magnetic resonance studies on DSKNPH in non-aqueous solvents revealed strong solvent and temperature dependence due to solvent-solute interactions. Optical measurements on DSKNPH in DMSO in the presence and absence of KPF6 gave extinction coefficients of 83,300±2000 and 25,600±2000 M−1 cm−1 at 612 and 427 nm at 295 K. In CH2Cl2, extinction coefficient of 34,000±2000 M−1 cm−1 was calculated at 422 nm. When DMSO solutions of DSKNPH were allowed to interact with DMSO solutions of NaBH4 the low energy electronic state becomes favorable and when DMSO solutions of DSPKNPH where allowed to interact with DMSO solutions of KPF6 or NaBF4, the high energy electronic state becomes favorable. The reversible BH4/BF4 interconversion points to physical interactions between these species and DSKNPH and hints to the possible use of DSKNPH as a spectrophotometric sensor for a variety of physical and chemical stimuli. Thermo-optical measurements on DSKNPH in DMSO confirmed the reversible interconversion between the high and low energy electronic states of DSKNPH and allowed for the calculations of the thermodynamic activation parameters of DSKNPH. Changes in enthalpy (ΔH) of +57.67±4.20; 27.15±0.90 kJ mol−1, entropy (ΔS) of +160±12.88; 83±2.91 J mol−1 and free energy (ΔG) of −8.52±0.40; 2.66±0.25 kJ mol−1 were calculated at 295 K in the absence and presence of NaBH4, respectively. Manipulation of the equilibrium distribution of the high and low energy electronic states of DSKNPH allowed for the use of these systems (DSKNPH and surrounding solvent molecules) as molecular sensors for group I and II metal ions. Group I and II metal ions in concentrations as low as 1.00×10−5 M can be detected and determined using DSKNPH in DMSO.  相似文献   

11.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   

12.
Yin F  Shin HK  Kwon YS 《Talanta》2005,67(1):221-226
The present paper describes the modification of hemoglobin (Hb)-octadecylamine (ODA) Langmuir-Blodgett (LB) film on a gold electrode surface to develop a novel electrochemical biosensor for the detection of hydrogen peroxide. Atomic force microscopy (AFM) image of Hb-ODA LB film indicated Hb molecules existed in ODA layer in a well-ordered and compact form. The immobilized Hb displayed a couple of stable and well-defined redox peaks with an electron transfer rate constant of 4.58 ± 0.95 s−1 and a formal potential of −185 mV (versus Ag/AgCl) in phosphate buffer (1.0 mM, pH 5.0) contain 0.1 M KCl at a scan rate of 200 mV s−1, characteristic of Hb heme Fe(III)/Fe(II) redox couple. The formal potential of Hb heme Fe(III)/Fe(II) redox couple in ODA film shifted linearly between pH 5 and 8 with a slope of −23.8 mV pH−1, suggesting that proton took part in electrochemical reaction. The ODA could accelerate the electron transfer between Hb and the electrode. This modified electrode showed an electrochemical activity to the reduction of hydrogen peroxide (H2O2) without the aid of any electron mediator.  相似文献   

13.
The sulphur containing inhibitors (I), cysteine (Cys) and sodium thiosulphate (THS), have been found to inhibit Hg(II) catalyzed exchange of cyanide in hexacyanoferrate(II) by nitroso-R-salt (NRS). The inhibitory effect of both the ligands are attributed to their binding tendencies with Hg(II) leading to the formation of catalyst-inhibitor (C-I) complex. The reactions have been followed spectrophotometrically in aqueous medium at 720 nm by noting the increase in absorbance of the green colour product, [Fe(CN)5NRS]3− at pH 6.50 ± 0.02, temp 25.0 ± 0.1 °C and ionic strength (μ) 0.1 M (KNO3). A most plausible mechanistic scheme involving the role of analytes (inhibitors) has been proposed. The values of equilibrium constants for complex formation between catalyst-inhibitor (KCI), catalyst-substrate (KS) and Mechaelis-Menton constant (Km) have been computed from the kinetic data. The linear calibration curves have been established between absorbance and inhibitor concentrations under specified conditions. Cys and THS have been determined in the range 1-5 × 10− 7 M and 4.9-16.9 × 10− 7 M respectively. The detection limits have been computed to be 1 × 10− 7 M and 4.9 × 10− 7 M for Cys and THS, respectively.  相似文献   

14.
A highly sensitive mechanized method has been developed for the determination of mercury in milk by atomic fluorescence spectrometry (AFS). Samples were sonicated for 10 min in an ultrasound water bath in the presence of 8% (v/v) aqua regia, 2% (v/v) antifoam A and 1% (m/v) hydroxilamine hydrochloride, and after that, they were treated with 8 mmol l−1 KBr and 1.6 mmol l−1 KBrO3 in an hydrochloric medium. Atomic fluorescence measurements were made by multicommutation, which provides a fast alternative in quality control analysis, due to the easy treatment of a large number of samples (approximately 70 h−1), and is an environmentally friendly procedure, which involves a waste generation of only 94.5 ml h−1 as compared with the 605 ml h−1 obtained by using continuous AFS measurements. The limit of detection found was 0.011 ng g−1 Hg in the original sample. The method provided a relative standard deviation of 3.4% for five independent analysis of a sample containing 0.30 ng g−1 Hg. To validate the accuracy of the method, a certified reference material NIST-1459 (non-fat milk powder) containing 0.3±0.2 ng g−1 Hg was analysed and a value of 0.27±0.06 ng g−1 Hg was found. A comparison made between data found by the developed procedure and those obtained by microwave-assisted digestion and continuous AFS measurements evidenced a good comparability between these two strategies. Results obtained for commercially available milk samples varied between 0.09 and 0.61 ng g−1 Hg depending on the type of sample and its origin. The confluence of the analytical waste with a 6 mol l−1 NaOH allowed us to reduce the waste generation in a working session from 1 l to 5 g solid residue with a matrix of Fe(OH)3 which contributes to the deactivation of traces of heavy metals presents in the samples that does not form volatile hydrides.  相似文献   

15.
A novel and sensitive electrochemical DNA biosensor has been developed for the detection of DNA hybridization. The biosensor was proposed by using copper(II) complex of Luteolin C30H18CuO12 (CuL2) as an electroactive indicator based on silver nanoparticles and multi-walled carbon nanotubes (Ag/MWCNTs) modified glassy carbon electrode (GCE). In this method, the 4-aminobenzoic acid (4-ABA) and Ag nanoparticles were covalently grafted on MWCNTs to form Ag/4-ABA/MWCNTs. The proposed method dramatically increased DNA attachment quantity and complementary ssDNA detection sensitivity for its large surface area and good charge-transport characteristics. DNA hybridization detection was performed using CuL2 as an electroactive indicator. The CuL2 was synthesized and characterized using elemental analysis (EA) and IR spectroscopy. Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction between CuL2 and ds-oligonucleotides (dsDNA). It was revealed that CuL2 presented high electrochemical activity on GCE, and it could be intercalated into the double helices of dsDNA. The target ssDNA of the human hepatitis B virus (HBV) was quantified in a linear range from 3.23 × 10−12 to 5.31 × 10−9 M (r = 0.9983). A detection limit of 6.46 × 10−13 M (3σ, n = 11) was achieved.  相似文献   

16.
α-Fe2O3 nanoparticles prepared using a simple solution-combusting method have been dispersed in chitosan (CH) solution to fabricate nanocomposite film on glass carbon electrode (GCE). The as-prepared α-Fe2O3 nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanocomposite film exhibits high electrocatalytic oxidation for nitric oxide (NO) and reduction for hydrogen peroxide (H2O2). The electrocatalytic oxidation peak is observed at +0.82 V (vs. Ag/AgCl) and controlled by diffusion process. The electrocatalytic reduction peak is observed at −0.45 V (vs. Ag/AgCl) and controlled by diffusion process. This α-Fe2O3-CH/GCE nanocomposite bioelectrode has response time of 5 s, linearity as 5.0 × 10−7 to 15.0 × 10−6 M of NO with a detection limit of 8.0 × 10−8 M and a sensitivity of −283.6 μA/mM. This α-Fe2O3-CH/GCE nanocomposite bioelectrode was further utilized in detection of H2O2 with a detection limit of 4.0 × 10−7 M, linearity as 1.0 × 10−6 to 44.0 × 10−6 M and with a sensitivity of 21.62 μA/mM. The shelf life of this bioelectrode is about 6 weeks under room temperature conditions.  相似文献   

17.
Preconcentration of heavy metals in water with ammonium pyrrolydine dithiocarbamate (APDC) is a common practice in analytical chemistry. A literature review on this topic showed that several authors use this precipitation agent, but in different preconcentration conditions, conducting to divergent results. The objective of this work is to use factorial design to optimize the factors involved in the preconcentration process of heavy metals using APDC. Five factors were studied: sample volume, solution pH, APDC concentration, APDC volume and stirring time. The assays were performed by energy dispersive X-ray fluorescence (EDXRF). The values for detection limits within 95% confidence level, in μg L−1, were: Fe (6.0 ± 0.1), Cu (4.0 ± 0.1), Zn (2.0 ± 0.1), Se (4.0 ± 0.1) and Pb (5.0 ± 0.1). The value for quantification limit for the five elements was 20 μg L−1, with 3% deviation. Multi-element standard solutions were prepared. Precipitation procedure was applied in the spiked solutions and the samples were filtered in cellulose ester membrane for quantification measurements. The optimum values obtained were 300 mL of sample solution, pH 4, 1 mL of 2% APDC and 10 min of stirring time. The concentration results obtained for the validation measurements were satisfactory for in situ survey employing a portable instrument.  相似文献   

18.
Malik UR  Hasany SM  Subhani MS 《Talanta》2005,66(1):166-173
The sorptive potential of sunflower stem (180-300 μm) for Cr(III) ions has been investigated in detail. The maximum sorption (≥85%) of Cr(III) ions (70.2 μM) has been accomplished using 30 mg of high density sunflower stem in 10 min from 0.001 M nitric and 0.0001 M hydrochloric acid solutions. The accumulation of Cr(III) ions on the sorbent follows Dubinin-Radushkevich (D-R), Freundlich and Langmuir isotherms. The isotherm yields D-R saturation capacity Xm = 1.60 ± 0.23 mmol g−1, β = −0.00654 ± 0.00017 kJ2 mol−2, mean free energy E = 8.74 ± 0.12 kJ mol−1, Freundlich sorption capacity KF = 0.24 ± 0.11 mol g−1, 1/n = 0.90 ± 0.04 and of Langmuir constant KL = 6800 ± 600 dm3 mol−1 and Cm = 120 ± 18 μmol g−1. The variation of sorption with temperature (283-323 K) gives ΔH = −23.3 ± 0.8 kJ mol−1, ΔS = −64.0 ± 2.7 J mol−1 K−1 and ΔG298k = −4.04 ± 0.09 kJ mol−1. The negative enthalpy and free energy envisage exothermic and spontaneous nature of sorption, respectively. Bisulphate, Fe(III), molybdate, citrate, Fe(II), Y(III) suppress the sorption significantly. The selectivity studies indicate that Cr(III), Eu(III) and Tb(III) ions can be separated from Tc(VII) and I(I). Sunflower stem can be used for the preconcentration and removal of Cr(III) ions from aqueous medium. This cheaper and novel sorbent has potential applications in analytical and environmental chemistry, in water decontamination, industrial waste treatment and in pollution abatement. A possible mechanism of biosorption of Cr(III) ions onto the sunflower stem has been proposed.  相似文献   

19.
The fabrication of a self-assembled monolayer (SAM) of a cyclopentadienylnickel(II) thiolato Schiff base compound, [Ni(SC6H4NC(H)C6H4OCH2CH2SMe)(η5-C5H5)]2 on a gold electrode is described. Effective electronic communication between the Ni(II) centres and the gold surface was established by electrochemically cycling the Schiff base-doped Au electrode in 0.1 M NaOH from −200 mV to +600 mV. The SAM-modified electrode exhibited quasi-reversible electrochemistry. The integrity of this electrocatalytic SAM, with respect to its ability to block and electro-catalyse certain Faradaic processes, was interrogated using cyclic voltammetric experiments. The formal potential, ′, varied with pH to give a slope of about −30 mV pH−1. The surface concentration, G, of the nickel redox centres was found to be 1.548×10−11 mol cm−2. By electrostatically doping the SAM using an applied potential of +700 mV versus Ag/AgCl, in the presence of horseradish peroxidase (HRP), it was fine-tuned for amperometric determination of H2O2. The electrocatalytic-type biosensor displayed typical Michaelis-Menten kinetics and the limit of detection was found to be 6.25 mM.  相似文献   

20.
A simple and highly selective flow injection (FI) on-line preconcentration and separation flame atomic absorption spectrometric (FAAS) method was developed for the determinations of trace amounts of silver, gold and palladium. The selective preconcentration of the noble metals was achieved in a wide range of sample acidity (0.1-6 M HNO3 or HCl) on a microcolumn packed with amidinothioureido-silica gel (ATuSG). The analytes retained on the column were effectively eluted with 5.0% thiourea solution. The analytical procedure was optimized for sample acidity, elution, interferences, flow rate of sampling and eluting, and concentration of sample. Common co-existing cations and anions did not interfere with the preconcentration and determination of the three metals. At a sample loading flow rate of 4.5 ml min−1 with 60 s preconcentration, detection limits (3σ) of 1.1 ng ml−1 Ag, 13 ng ml−1 Au and 17 ng ml−1 Pd were obtained. The precisions (R.S.D., n=11) were 1.2% for Ag, 1.2% for Au and 1.7% for Pd, respectively. The detection limits can be further improved by increasing sample volume. The analytical results obtained by the proposed method for a number of standard reference materials were in good agreement with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号