首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DNA is a powerful and versatile tool for nanoscale self-assembly. Several researchers have assembled nanoparticles and colloids into a variety of structures using the sequence-specific binding properties of DNA. Until recently, however, all of the reported structures were disordered, even in systems where ordered colloidal crystals might be expected. We detail the experimental approach and surface preparation that we used to form the first DNA-mediated colloidal crystals, using 1 mum diameter polystyrene particles. Control experiments based on the depletion interaction clearly indicate that two standard methods for grafting biomolecules to colloidal particles (biotin/avidin and water-soluble carbodiimide) do not lead to ordered structures, even when blockers are employed that yield nominally stable, reversibly aggregating dispersions. In contrast, a swelling/deswelling-based method with poly(ethylene glycol) spacers resulted in particles that readily formed ordered crystals. The sequence specificity of the interaction is demonstrated by the crystal excluding particles bearing a noninteracting sequence. The temperature dependence of gelation and crystallization agree well with a simple thermodynamic model and a more detailed model of the effective colloidal pair interaction potential. We hypothesize that the surfaces yielded by the first two chemistries somehow hinder the particle-particle rolling required for annealing ordered structures, while at the same time not inducing a significant mean-force interaction that would alter the self-assembly phase diagram. Finally, we observe that particle crystallization kinetics become faster as the grafted-DNA density is increased, consistent with the particle-particle binding process being reaction, rather than diffusion limited.  相似文献   

2.
A three-dimensional computer simulation has been used to predict crystallization kinetics and crystalline morphology in composite materials that are based on crystallizable thermoplastics. Reinforcing fibers in three-dimensional simulations show similar behavior to those in two-dimensional simulations; fibers suppress crystallization relative to an unreinforced polymer since they constrain spherulitic growth by an impingement mechanism, and also enhance crystallization by providing added surface nucleation sites. The effects of varying controlling parameters on crystallization kinetics and morphology are qualitatively the same as those observed in the two-dimensional case. The relative bulk and fiber nucleation denisities, in addition to the fiber volume fraction, fiber diameter, and spherulitic growth rate control the crystallization kinetics and crystalline morphology that develop in reinforced thermoplastic composites. It is more difficult to achieve the transcrystalline morphology in slices of three-dimensional composites than it is in two-dimensional composites because nuclei in 3-D systems are not constrained to positions in or near a 2-D plane. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The cluster distribution approach is extended to investigate the crystallization kinetics of miscible polymer blends. Mixture effects of polymer-polymer interactions are incorporated into the diffusion coefficient. The melting temperature, activation energy of diffusion, and phase transition enthalpy also depend on the blending fraction and lead to characteristic kinetic behavior of crystallization. The influence of different blending fractions is presented through the time dependence of polymer concentration, number and size of crystals, and crystallinity (in Avrami plots). Computational results indicate how overall crystallization kinetics can be expressed approximately by the Avrami equation. The nucleation rate decreases as the blending fraction of the second polymer component increases. The investigation suggests that blending influences crystal growth rate mainly through the deposition-rate driving force and growth-rate coefficient. The model is further validated by simulating the experimental data for the crystallization of a blend of poly(vinylidenefluoride)[PVDF] and poly(vinyl acetate)[PVAc] at various blending fractions.  相似文献   

4.
A body of experimental evidence suggests that reinforcing fibers influence both the crystallization kinetics and morphology of those composite materials that are based on crystallizable thermoplastics. The absence of an analytical model to predict the effect of fibers on crystallization has hindered data analysis. A new approach, using computer simulation of polymer crystallization, makes it possible to study the influence that reinforcing fibers have on the crystallization kinetics and morphology of semicrystalline polymers. Fibers depress the crystallization rate relative to an unreinforced polymer since they constrain spherulitic growth by an impingement mechanism. On the other hand, reinforcing fibers can also enhance crystallization rate by providing added surface nucleation sites. This work describes a two-dimensional simplification of the crystallization process that occurs in bulk materials. It is demonstrated that the relative bulk and fiber nucleation densities, in addition to the fiber fraction, fiber diameter, and spherulitic growth rate control the crystallization kinetics and also the spherulitic and transcrystalline morphologies that develop in reinforced thermoplastic composites. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
6.
The crystallization kinetics of poly(ethylene oxide) (PEO) blocks in poly(ethylene oxide)‐block‐poly(1,4‐butadiene) (PEO‐b‐PB)/poly(1,4‐butadiene) (PB) blends were previously found to display a one‐to‐one correlation with the microdomain morphology. The distinct correlation was postulated to stem from the homogeneous nucleation‐controlled crystallization in the cylindrical and spherical PEO microdomains, where there existed a direct proportionality between the nucleation rate and the individual domain volume. This criterion was valid for confined crystallization in which the crystallization was spatially restricted within the individual domains. However, it was possibly not applicable to PEO‐b‐PB/PB, in that the melt mesophase was strongly perturbed upon crystallization. Therefore, it may be speculated that the crystal growth front developed in a given microdomain could intrude into the nearby noncrystalline domains, yielding the condition of cooperative crystallization. To establish an unambiguous model system for verifying the existence of microdomain‐tailored kinetics in confined crystallization, we crosslinked amorphous PB blocks in PEO‐b‐PB/PB with a photoinitiated crosslinking reaction to effectively suppress the cooperative crystallization. Small‐angle X‐ray scattering revealed that, in contrast to the noncrosslinked systems, the pre‐existing domain morphology in the melt was retained upon crystallization. The crystallization kinetics in the crosslinked system also exhibited a parallel transition with the morphological transformation, thereby verifying the existence of microdomain‐tailored kinetics in the confined crystallization of block copolymers. Homogeneous nucleation‐controlled crystallizations in cylindrical and spherical morphologies were demonstrated in an isothermal crystallization study in which the corresponding crystallinity developments followed a simple exponential rule not prescribed by conventional spherulitic crystallization. Despite the effective confinement imposed by the crosslinked PB phase, crystallization in the lamellar phase still proceeded through a mechanism analogous to the spherulitic crystallization of homopolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 519–529, 2002; DOI 10.1002/polb.10121  相似文献   

7.
The quality of thermoplastic parts strongly depends on their thermal history during processing. Heat transfer modelling requires accurate knowledge of thermophysical properties and crystallization kinetics in conditions representative of the forming process. In this work, we present a new PvT apparatus and associated method to identify the crystallization kinetics under pressure. The PvT-xT mould was designed for high performance thermoplastics: high temperature (up to 400 °C), high cooling rate (up to 200 K/min) and very high pressure (up to 200 MPa). Specific volume measurements were performed at a low cooling rate to avoid a thermal gradient. The crystallization kinetics under pressure can be identified for a wide range of cooling rates by an inverse method taking into account the thermal and crystallinity gradients. Since identification is based on volume variations, the proposed methodology is non-intrusive. Furthermore, the enthalpy released by the crystallization was measured during the experiment by a heat flux sensor located in the moulding cavity.  相似文献   

8.
Flow Induced Crystallization (FIC) is the common term to indicate the acceleration in polymer crystallization kinetics due to the action of flow. FIC is expected to be the result of the coupling between the intrinsic (quiescent) crystallization kinetics and the rheological response of the polymer. The choice of a suitable rheological model, therefore, is a crucial requirement for a successful FIC model. Recent work of our group[1] has demonstrated that the Doi-Edwards rheological model (DE), based on the concept of chain reptation, can be easily incorporated into classical crystallization models to successful predict the enhancement in nucleation rate under the action of a steady shear flow. In this paper, the interaction between the rheological parameters of the DE model and the crystallization kinetics parameters is investigated in more details. In particular, the effect of the crystallization temperature, which acts on both the polymer relaxation time and the free energy jump between liquid and solid phase, is determined and discussed.  相似文献   

9.
Polymer solidification occurring in many processes, like for instance injection molding, compression molding and extrusion, is a complex phenomenon, strongly influenced by the thermo-mechanical history experienced by the material during processing. From this point of view, characterization of polymer crystallization in the range of processing conditions, i.e. including high cooling rate, is of great technological and academic interest. Quiescent, non-isothermal crystallization kinetics of two polypropylene resins were investigated using a new method, based on fast cooling of thin samples with air/water sprays and optical detection of the crystallization phenomenon. The range of cooling rates attained in this experimental study is considerably larger than that achieved by traditional methods. Quiescent crystallization kinetics of the resins is also investigated by the means of DSC, operated under isothermal conditions with a limited degree of under-cooling and for constant cooling rates up to about 1 K s−1. The results demonstrate the importance of performing fast cooling experiments to gather reliable crystallization kinetics data.  相似文献   

10.
Consideration of crystallization kinetics in high-molecular-weight polymers shows that adjacent reentry is unlikely in melt crystallization and that sections of individual chains will crystallize concurrently at several sites. Hence the characteristic crystallization process will be that of a loop of chain with both ends attached to different sites on the crystal surface. Analysis of this process leads to predictions of crystallinity values for various conditions of chain mobility in the crystal and of entanglements in the amorphous regions. Observations on polymers crystallized at high undercoolings where a crystallinity of about 30% is usually observed suggest that the common case is that of a highly entangled amorphous layer and rapid, local annealing of the chains but with no long-range motion in the crystal. This model of loop crystallization is shown to agree with available small-angle neutron scattering data. The overall crystallization kinetics are in accord with surface nucleation controlled growth which also arises out of the Lauritzen-Hoffman adjacent reentry model and has been shown to fit experimental results on growth rates.  相似文献   

11.
Melt or cold crystallization kinetics has a strong bearing on morphology and the extent of crystallization, which significantly affects the physical properties of polymeric materials. Nonisothermal crystallization kinetics are often analyzed by the classical Johnson–Mehl–Avrami–Kolmogorov (JMAK) model or one of its variants, even though they are based on an isothermal assumption. As a result, during the nonisothermal (e.g. constant heating or cooling rate) crystallization of polymeric material, different sets of model parameters are required to describe crystallization at different rates, thereby increasing the total number of model parameters. In addition, due to the uncorrelated nature of these model parameters with the cooling or heating rate, accurate modeling at any intermediate condition is not possible. In the present work, these two limitations of the conventional approach have been eliminated by exhibiting the existence of a functional relationship between cooling or heating rate and effective activation energy during nonisothermal melt or cold crystallization in three linear aromatic polyesters. Furthermore, it has been shown that when the JMAK model is used in conjunction with this functional relationship, it is possible to precisely predict the experimental nonisothermal melt or cold crystallization kinetics at any linear cooling or heating rate with a single set of model parameters.  相似文献   

12.
Differential scanning calorimeters have frequently been used to study the isothermal crystallization kinetics of fats and oils. In some circumstances (e.g. start of crystallization during cooling to the crystallization temperature, crystallization in emulsion) this straightforward approach is not applicable. This paper describes an indirect DSC method for determination of the crystallization kinetics under these ‘difficult’ circumstances. The principle is to stop the crystallization at different moments during the isothermal crystallization and raise the sample temperature. The amount of heat released is then used as a measure for the amount of crystallization and plotted as function of time. Combination of the stop-and-return method with the direct method may sometimes be used to save on measurement time. Stop-and-return experiments can furthermore be used to gain more insight in the crystallization mechanism based on the fact that different polymorphic forms and fractions have different melting temperatures.  相似文献   

13.
The isothermal and nonisothermal crystallization kinetics of partially melted nylon‐1212 was investigated with differential scanning calorimetry. Because of partial melting, the pre‐existing crystals changed the crystallization mechanism and had a strong effect on the crystallization process. The Avrami exponent and interfacial free energy of the chain‐folded surface of partially melted nylon‐1212 were higher than those of completely melted nylon‐1212. The work of chain folding was determined to be 5.9 kcal/mol. The activation energy of the isothermal crystallization process was determined to be 399.1 kJ/mol, far higher than that of complete melting. The crystallization rate coefficient and Jeziorny analysis indicated that the ability of nonisothermal crystallization for partially melted nylon‐1212 was enhanced. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3222–3230, 2005  相似文献   

14.
The isothermal crystallization of isotactic polypropylene at different temperatures in the presence of fibrous substrates has been investigated. It is shown that preferential transcrystalline growth occurs at the fiber surface and that changes in nucleation density in the bulk material adjacent to the fibers also occur, the extent of which is dependent on temperature and fiber volume fraction. The effects are discussed in terms of the diffusion of heterogeneities in the bulk due to interaction and the adsorption on the fibers.  相似文献   

15.
Low melting temperature thermoplastic sheets based on poly(e-caprolactone) (PCL) can be formed directly on the patient and are used as immobilization device (mask) in the radiation therapy. The immobilization mask is allowed to harden in isometric conditions on the body at room temperature. A new method for isometric crystallization kinetics of thermoplastic polymer sheets is developed using a tensile-strength instrument. The isometric crystallization method allows investigating the shrinkage force on time of crystallization of stretched samples of thermoplastic polymer sheets or immobilization medical devices. The dependence of the shrinkage force on time is described by Avrami equation and the kinetics parameters of isometric crystallization are calculated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
17.
The morphology and kinetics of crystallization from melt-miscible blends is reviewed for binary systems in which either one or both polymer components are crystallizable. In systems in which one component (component A) crystallizes first, the other component (B) may reside finally between spherulites, between growth arms (composed of a stack of A crystalline lamellae), or between crystal lamellae of A. The kinetics of component redistribution dictates which site must become primary. It is shown that the diffusivity D of the components in the melt and the velocity V of spherulite growth combine through the diffusion length δ = D/V to define the final location for component B and to also define whether spherulite propagation will be linear or parabolic in time. When crystallization of both components proceeds concurrently, by forming spherulites of A and of B, the spherulites are prone to interpenetrate or to form concentric spherulites. Cooperative crystallization, in which the kinetics of a rapidly crystallizing component and a slowly crystallizing component are both affected such that the two crystallize nearly simultaneously, is discussed. Finally, the competition between liquid-liquid phase separation and crystallization in systems with either an upper or lower critical solution temperature is reviewed.  相似文献   

18.
The crystallization kinetics of Fe83P17 amorphous alloy has been studied by Mössbauer spectroscopy and X-ray diffractometry. The samples were annealed isothermally at two different temperatures (315 °C and 325 °C). During isothermal annealing of the samples three phases were observed: crystalline Fe3P phase, crystalline -Fe phase and the amorphous phase. The value of the Avrami exponent was found to be about 2.0 at each annealing temperature. This suggests that the growth rate of the crystals is controlled by volume diffusion and the nucleation rate decreases during crystallization. The activation energy obtained for the overall crystallization process was 193±43 kJ mol–1.  相似文献   

19.
A method of analysing nucleation and crystallization kinetics, based on real time image analysis and hot stage optical microscopy, has been used to investigate the isothermal crystallization of different grades polyoxymethylene. The data were compared with results from differential scanning calorimetry (DSC), using a simple numerical simulation to model the effects of finite smaple thickness on the form of the isothermal DSC curves. This simulation was then used to predict the microstructural development in a bulk sample for different boundary conditions, taking into account latent heat evolution and diffusion during crystallization.  相似文献   

20.
This article gives an overview of recent progress in the self-assembly of nanocrystals. Classic self-assembly of nanocrystals, so-called colloidal crystallization driven by van der Waals interactions, is highlighted first with an emphasis on the recent realization of binary colloidal crystals. Next, new developments in the integration of nanocrystals into clusters based on electrostatic interactions, hydrogen bonding and dipole-dipole interactions are summarized, shedding light on the defined control of the interactions between the nanocrystals. Finally, the fabrication of heterogenous nanocrystals, obtained via either phase selective modification at the water/oil interface or facet-selective crystal growth on non-spherical nanocrystals is discussed. These last materials may provide significant building blocks for mimicking molecular self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号