首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resonance Raman spectroscopy is a powerful tool to investigate flavins and flavoproteins, and a good understanding of the flavin vibrational normal modes is essential for the interpretation of the Raman spectra. Isotopic labeling is the most effective tool for the assignment of vibrational normal modes, but such studies have been limited to labeling of rings II and III of the flavin isoalloxazine ring. In this paper, we report the resonance and pre-resonance Raman spectra of flavin mononucleotide (FMN) and its N5-methyl neutral radical semiquinone (5-CH 3FMN(*)), of which the 8-methyl group of ring I has been deuterated. The experiments indicate that the Raman bands in the low-frequency region are the most sensitive to 8-methyl deuteration. Density functional theory (DFT) calculations have been performed on lumiflavin to predict the isotope shifts, which are used to assign the calculated normal modes to the Raman bands of FMN. A first assignment of the low-frequency Raman bands on the basis of isotope shifts is proposed. Partial deuteration of the 8-methyl group reveals that the changes in the Raman spectra do not always occur gradually. These observations are reproduced by the DFT calculations, which provide detailed insight into the underlying modifications of the normal modes that are responsible for the changes in the Raman spectra. Two types of isotopic shift patterns are observed: either the frequency of the normal mode but not its composition changes or the composition of the normal mode changes, which then appears at a new frequency. The DFT calculations also reveal that the effect of H/D-exchange in the 8-methyl group on the composition of the vibrational normal modes is affected by the position of the exchanged hydrogen, i.e., whether it is in or out of the isoalloxazine plane.  相似文献   

2.
Quantitative electrochemical SERS of flavin at a structured silver surface   总被引:1,自引:0,他引:1  
In situ electrochemical surface enhanced Raman spectra (SERS) for an immobilized monolayer of a flavin analogue (isoalloxazine) at nanostructured silver surfaces are reported. Unique in the present study, the flavin is not directly adsorbed at the Ag surface but is attached through a chemical reaction between cysteamine adsorbed on the Ag surface and methylformylisoalloxazine. Even though the flavin is held away from direct contact with the metal, strong surface enhancements are observed. The nanostructured silver surfaces are produced by electrodeposition through colloidal templates to produce thin (<1 microm) films containing close-packed hexagonal arrays of uniform 900 nm sphere segment voids. The sphere segment void (SSV) structured silver surfaces are shown to be ideally suited to in situ electrochemical SERS studies at 633 nm, giving stable, reproducible surface enhancements at a range of electrode potentials, and we show that the SER spectra are sensitive to subfemtomole quantities of immobilized flavin. Studies of the SER spectra as a function of the electrode potential show clear evidence for the formation of the flavin semiquinone at the electrode surface at cathodic potentials.  相似文献   

3.
Medium-chain acyl-CoA dehydrogenase (MCAD) catalyzes the flavin-dependent oxidation of fatty acyl-CoAs to the corresponding trans-2-enoyl-CoAs. The interaction of hexadienoyl-CoA (HD-CoA), a product analogue, with recombinant pig MCAD (pMCAD) has been studied using (13)C NMR and (1)H-(13)C HSQC spectroscopy. Upon binding to oxidized pMCAD, the chemical shifts of the C1, C2, and C3 HD carbons are shifted upfield by 12.8, 2.1, and 13.8 ppm, respectively. In addition, the (1)H chemical shift of the C3-H is also shifted upfield by 1.31 ppm while the chemical shift of the C4 HD-CoA carbon is unchanged upon binding. These changes in chemical shift are unexpected given the results of previous Raman studies which revealed that the C3=C2-C1=O HD enone fragment is polarized upon binding to MCAD such that the electron density at the C3 and C1 carbons is reduced, not increased (Pellet et al. Biochemistry 2000, 39, 13982-13992). To investigate the apparent discrepancy between the NMR and Raman data for HD-CoA bound to MCAD, (13)C NMR spectra have been obtained for HD-CoA bound to enoyl-CoA hydratase, an enzyme system that has also previously been studied using Raman spectroscopy. Significantly, binding to enoyl-CoA hydratase causes the chemical shifts of the C1 and C3 HD carbons to move downfield by 4.8 and 5.6 ppm, respectively, while the C2 resonance moves upfield by 2.2 ppm, in close agreement with the alterations in electron density at these carbons predicted from Raman spectroscopy (Bell, A. F.; Wu, J.; Feng, Y.; Tonge, P. J. Biochemistry 2001, 40, 1725-33). The large increase in shielding experienced by the C1 and C3 HD carbons in the HD-CoA/MCAD complex is proposed to arise from the ring current field from the isoalloxazine portion of the flavin cofactor. The flavin ring current, which is only present when the enzyme is placed in an external magnetic field, also explains the differences in (13)C NMR chemical shifts for acetoacetyl-CoA when bound as an enolate to MCAD and enoyl-CoA hydratase and is used to rationalize the observation that the line widths of the C1 and C3 resonances are narrower when the ligands are bound to MCAD than when they are free in the protein solution.  相似文献   

4.
Abstract— Primary and secondary photochemical processes in oxygen-free aqueous solution have been characterised for FMN alone and in the presence of EDTA and four amino acids using nanosecond and microsecond flash photolysis and continuous photolysis techniques. The relative contributions of oneelectron and two-electron (group or hydride transfer) reactions to the deactivation of the triplet has been determined by comparing the radical concentration (560 nm) with the bleaching of the ground state (446 nm). It was concluded that one-electron reactions (hydrogen atom or electron abstraction) are the major mode of reactivity of the flavin triplet state with all the suhstrates studied.
The nature of the reactions of the flavin semiquinone radical have been studied quantitatively by microsecond flash photolysis. These secondary reactions consist of either a 'back reaction' between the flavin and substrate radicals (tryptophan or glycyl-tyrosine) or the transfer of a second electron (or hydrogen atom) from the substrate radical to the flavin radical (EDTA, methionine and possibly cysteine) to form reduced flavin and oxidised substrate. From a comparison of the quantum yields of formation of reduced flavin using 'flash' and continuous irradiation, an additional pathway for the decay of the flavin radical is suggested to occur at low light intensities in the presence of glycyl-tyrosine or histidine.  相似文献   

5.
The mechanism of amine oxidation catalyzed by D-arginine dehydrogenase (DADH) has been investigated using steady-state and rapid reaction kinetics, with pH, substrate and solvent deuterium kinetic isotope effects (KIE) as mechanistic probes, and computational studies. Previous results showed that 85-90% of the flavin reduction reaction occurs in the mixing time of the stopped-flow spectrophotometer when arginine is the substrate, precluding a mechanistic investigation. Consequently, leucine, with slower kinetics, has been used here as the flavin-reducing substrate. Free energy calculations and the pH profile of the K(d) are consistent with the enzyme preferentially binding the zwitterionic form of the substrate. Isomerization of the Michaelis complex, yielding an enzyme-substrate complex competent for flavin reduction, is established due to an inverse hyperbolic dependence of k(cat)/K(m) on solvent viscosity. Amine deprotonation triggers the oxidation reaction, with cleavage of the substrate NH and CH bonds occurring in an asynchronous fashion, as suggested by the multiple deuterium KIE on the rate constant for flavin reduction (k(red)). A pK(a) of 9.6 signifies the ionization of a group that facilitates flavin reduction in the unprotonated form. The previously reported high-resolution crystal structures of the iminoarginine and iminohistidine complexes of DADH allow us to propose that Tyr(53), on a mobile loop covering the active site, may participate in substrate binding and facilitate flavin reduction.  相似文献   

6.
BLUE AND ULTRAVIOLET-B LIGHT PHOTORECEPTORS IN PARSLEY CELLS   总被引:3,自引:0,他引:3  
Abstract— Ultraviolet-B (UV-B) and blue light photoreceptors have been shown to regulate chalcone synthase and flavonoid synthesis in parsley cell cultures. These photoreceptors have not yet been identified. In the present work, we studied UV-B photoreception with physiological experiments involving temperature shifts and examined the possible role of flavin in blue and UV-B light photoreception. Cells irradiated with UV-B light (0.5–15 min) at 2°C have the same fluence requirement for chalcone synthase and flavonoid induction as controls irradiated at 25°C. This is indicative of a purely photochemical reaction. Cells fed with riboflavin and irradiated with 6 h of UV-containing white light synthesize higher levels of chalcone synthase and flavonoid than unfed controls. This effect did not occur with blue light. These results indicate that flavin-sensitization requires excitation of flavin and the UV-B light photoreceptor. The in vivo kinetics of flavin uptake and bleaching indicate that the added flavin may act at the surface of the plasma membrane. In view of the likely role of membrane-associated flavin in photoreception, we measured in vitro flavin binding to microsomal membranes. At least one microsomal flavin binding site was solubilized by resuspension of a microsomal pellet in buffer with high KPi and NaCl concentrations and centrifugation at 38000 g. The 38000 g insoluble fraction had much greater flavin binding and contained a receptor with an apparent KD of about 3.6 μM and an estimated in vivo concentration of at least 6.7 × 10–8M. Flavin mononucleotide, roseoflavin, and flavin adenine dinucleotide can compete with riboflavin for this binding site(s), although each has lower affinity than riboflavin. Most microsomal protein was solubilized by resuspension of the microsomal pellet in non-denaturing detergents and centrifugation at 38 000 g ; however, this inhibited flavin binding, presumably because of disruption of the environment of the flavin receptor. The parsley microsomal flavin binding receptor(s) have a possible role in physiological photoreception.  相似文献   

7.
Flavin-mediated photooxidations have been described for applications in synthetic organic chemistry for some time and are claimed to be a route to the use of solar energy. We present a detailed investigation of the involved photophysical and photochemical steps in methoxybenzyl alcohol oxidation on a timescale ranging from sub-picoseconds to tens of microseconds. The results establish the flavin triplet state as the key intermediate for the photooxidation. The initial step is an electron transfer from the alcohol to the triplet state of the flavin catalyst with (3)k(ET)≈ 2 × 10(7) M(-1) s(-1), followed by a proton transfer in ~6 μs. In contrast, the electron transfer involving the singlet state of flavin is a loss channel. It is followed by rapid charge recombination (τ = 50 ps) without significant product formation as seen when flavin is dissolved in pure benzylic alcohol. In dilute acetonitrile/water solutions of flavin and alcohol the electron transfer is mostly controlled by diffusion, though at high substrate concentrations >100 mM we also find a considerable contribution from preassociated flavin-alcohol-aggregates. The model including a productive triplet channel and a competing singlet loss channel is confirmed by the course of the photooxidation quantum yield as a function of substrate concentration: We find a maximum quantum yield of 3% at 25 mM of benzylic alcohol and significantly smaller values for both higher and lower alcohol concentrations. The observations indicate the importance to perform flavin photooxidations at optimized substrate concentrations to achieve high quantum efficiencies and provide directions for the design of flavin photocatalysts with improved performance.  相似文献   

8.
The pH dependent behavior of two flavin cofactors, flavin-adenine dinucleotide (FAD) and flavin mononucleotide (FMN), has been characterized using femtosecond transient absorption spectroscopy for the first time. The flavin excited state was characterized in three states of protonation (Fl(-), Fl, and FlH(+)). We found that Fl and Fl(-) exhibit the same excited state absorption but that the lifetime of Fl(-) is much shorter than that of Fl. The transient absorption spectrum of FlH(+) is significantly different from Fl and Fl(-), suggesting that the electronic properties of the flavin chromophore become appreciably modified by protonation. We further studied the excited state protonation of the flavin and found that the protonation sites of the flavin in the ground and excited state are not equivalent. In the case of FAD, its excited state dynamics are controlled by the two conformations it adopts. At low and high pH, FAD adopts an "open" conformation and behaves the same as FMN. In a neutral pH range, FAD undergoes a fast excited state deactivation due to the "stacked" conformer. The transition from stacked to open conformer occurs at pH ~ 3 (because of adenine protonation) and pH ~ 10 (because of flavin deprotonation).  相似文献   

9.
The synthesis of thymine for DNA is catalyzed by the enzyme thymidylate synthase (TS). A family of flavin-dependent TSs encoded by the thyX gene has been discovered recently. These newly discovered TSs require a reducing substrate in addition to 2'-deoxyuridine monophosphate (dUMP) and 5,10-methylenetetrahydrofolate (CH2THF), suggesting that the enzyme-bound flavin is a redox intermediary in catalysis. The oxidation of the reduced flavin of the TS from Campylobacter jejuni has been observed directly upon mixing with dUMP and CH2THF under anaerobic conditions, thus providing the first direct demonstration of its redox role in catalysis. Product analysis showed that the one mole of 2'-deoxythymidine monophosphate is formed along with one mole of tetrahydrofolate for each mole of reduced enzyme-bound flavin. The classic TS inactivator 5-fluoro-2'-deoxyuridine monophosphate (FdUMP) was able to bind to the reduced enzyme but was unable to oxidize the flavin, even in the presence of CH2THF. Furthermore, the nucleotide binding site of the enzyme treated with FdUMP and CH2THF was irreversibly blocked, suggesting the formation of a stable substrate adduct analogous to that formed by the well-studied thyA-encoded TS. The formation of inactivated enzyme without flavin oxidation indicates that methylene transfer from the folate to the nucleotide occurs prior to flavin redox chemistry.  相似文献   

10.
In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E(sq/hq)) is ~170 mV, a striking difference. The former greatly prefers NAD(+) as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD(+)), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 ? resolution crystal structures for XDH, XO, the NAD(+)- and NADH-complexed XDH, E(sq/hq) were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E(sq/hq) difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD(+) binding at XDH. Instead, the positive charge of the NAD(+) ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD(+) molecule all contribute to altering E(sq/hq) upon NAD(+) binding to XDH.  相似文献   

11.
In LOV2, the blue-light sensitive domain of phototropin, the primary photophysical event involves intersystem crossing (ISC) from the singlet-excited state to the triplet state. The ISC rate is enhanced in LOV2 as compared to flavin mononucleotide (FMN) in solution, which likely results from a heavy-atom effect of a nearby conserved cysteine, C450. Here, we applied fluorescence line narrowing (FLN), resonance Raman (RR) and Fourier-transform infrared (FTIR) spectroscopy to investigate the electronic structure of FMN bound to Avena sativa LOV2 (AsLOV2), its C450A mutant and Adiantum LOV2 (Phy3LOV2). We demonstrate that FLN is the method of choice to obtain accurate vibrational spectra on highly fluorescent flavoproteins. The vibrational spectrum of AsLOV2-C450A showed small but significant shifts with respect to those of wild type AsLOV2 and Phy3LOV2, with a systematic down-shift of Ring I vibrations, upshifts of Ring II and III vibrations and an upshift of the C2=O mode. These trends are similar to those in FMN model systems with an electron-donating group substituted at Ring I, known to induce a quinoid character to the electronic structure of oxidized flavin. Thus, enhancement of the ISC rate in LOV2 is induced through weak electron donation by the cysteine which mixes the FMN pi-electrons with the heavy sulfur orbitals, manifesting itself in a quinoid character of the ground electronic state of oxidized FMN. The proximity of the cysteine to FMN thus not only enables formation of a covalent adduct between FMN and cysteine, but also facilitates the rapid electronic formation of the reactive FMN triplet state.  相似文献   

12.
13.
Abstract— The fluorescence lifetime of a partially-purified membrane fraction containing flavin and b-type cytochrome, presumably on the same protein, has been described. Possible implications of the blue light photoreactivity of the flavin as an assay, on the basis of its short fluorescence lifetime (about 1.37 ns), has been discussed.  相似文献   

14.
Three elution methods on two different reversed-phase C18 columns were developed to determine flavin derivatives in raw egg white, raw egg yolk, egg powder, pasteurised milk, fermented milk products and liver (chicken, calf and pig). Additionally, 11 thin-layer chromatography solvent systems were used to confirm presence of flavins detected in assessed products. It was found that an Alphabond C18 column was not as effective as a Symmetry C18 column. Method A (mobile phase gradient of methanol-0.05 M ammonium acetate, pH 6.0 applied on an Alphabond C18 column) can be used for determination of flavin adenine dinucleotide, flavin mononucleotide, riboflavin 4',5'-cyclic phosphate, riboflavin, 10-formylmethylflavin and 10-hydroxyethylflavin in products that do not contain 7alpha-hydroxyriboflavin. Method B (mobile phase gradient of methanol-demineralized water, on an Alphabond C18 column) can be useful to separate flavin coenzymes from other flavin compounds or to confirm the presence of 7alpha-hydroxyriboflavin and 10-hydroxyethylflavin in analysed samples. Method C (mobile phase gradient of methanol-0.05 M ammonium acetate, pH 6.0, on a Symmetry C18 column) allows separation of all flavins detected in tested products: flavin adenine dinucleotide, flavin mononucleotide, riboflavin 4',5'-cyclic phosphate, riboflavin, 10-formylmethylflavin, 10-hydroxyethylflavin, 7alpha-hydroxyriboflavin, riboflavin-beta-D-galactoside and riboflavin-alpha-D-glucoside.  相似文献   

15.
A pyrimidine-pyrimidone (6-4) photoproduct and a cyclobutane pyrimidine dimer (CPD) are major DNA lesions induced by ultraviolet irradiation, and (6-4) photolyase, an enzyme with flavin adenine dinucleotide (FAD) as a cofactor, repairs the former specifically by light illumination. We investigated resonance Raman spectra of (6-4) photolyase from Arabidopsis thaliana having neutral semiquinoid and oxidized forms of FAD, which were selectively intensity enhanced by excitations at 568.2 and 488.0 nm, respectively. DFT calculations were carried out for the first time on the neutral semiquinone. The marker band of a neutral semiquinone at 1606 cm(-1) in H(2)O, whose frequency is the lowest among various flavoenzymes, apparently splits into two comparable bands at 1594 and 1608 cm(-1) in D(2)O, and similarly, that at 1522 cm(-1) in H(2)O does into three bands at 1456, 1508, and 1536 cm(-1) in D(2)O. This D(2)O effect was recognized only after being oxidized once and photoreduced to form a semiquinone again, but not by simple H/D exchange of solvent. Some Raman bands of the oxidized form were observed at significantly low frequencies (1621, 1576 cm(-1)) and with band splittings (1508/1493, 1346/1320 cm(-1)). These Raman spectral characteristics indicate strong H-bonding interactions (at N5-H, N1), a fairly hydrophobic environment, and an electron-lacking feature in benzene ring of the FAD cofactor, which seems to specifically control the reactivity of (6-4) photolyase.  相似文献   

16.
The unconventional bioorthogonal catalytic activation of anticancer metal complexes by flavin and flavoproteins photocatalysis has been reported recently. The reactivity is based on a two-electron redox reaction of the photoactivated flavin. Furthermore, when it comes to flavoproteins, we recently reported that site mutagenesis can modulate and improve this catalytic activity in the mini Singlet Oxygen Generator protein (SOG). In this paper, we analyze the reductive half-reaction in different miniSOG environments by means of density functional theory. We report that the redox properties of flavin and the resulting reactivity of miniSOG is modulated by specific mutations, which is in line with the experimental results in the literature. This modulation can be attributed to the fundamental physicochemical properties of the system, specifically (i) the competition of single and double reduction of the flavin and (ii) the probability of electron transfer from the protein to the flavin. These factors are ultimately linked to the stability of flavin‘s electron-accepting orbitals in different coordination modes.  相似文献   

17.
MINDO /3 calculations have been performed on the Clostridium MP flavodoxin active site (a complex of the redox active coenzyme flavin mononucleotide sandwiched between the side chains of methionine and tryptophan) at various redox levels using coordinates derived from x-ray diffraction studies of the holoenzyme. Frontier orbital indices were calculated and indicate that reduction of the flavin is accompanied by induced polar states in the amino acid side chains. This stabilization of charge by the amino acid side chains could account for the reaction rate enhancement of flavin reduction catalyzed by flavodoxin. Frontier orbitals for free flavin, for the flavodoxin bound flavin without the amino acid side chains, and for the oxidized Desulfovibrio vulgaris flavodoxin active site were computed for comparison.  相似文献   

18.
The introduction of a flavin chromophore on the myoglobin (Mb) surface and an effective electron-transfer (ET) reaction through the flavin were successfully achieved by utilizing the self-assembly of heterostranded coiled-coil peptides. We have prepared a semiartificial Mb, named Mb-1alphaK, in which an amphiphilic and cationic alpha-helix peptide is conjugated at the heme propionate (Heme-1alphaK). Heme-1alphaK has a covalently bound iron-protoporphyrin IX (heme) at the N terminus of a 1alphaK peptide sequence. This sequence was designed to form a heterostranded coiled-coil in the presence of a counterpart amphiphilic and anionic 1alphaE peptide sequence in a parallel orientation. Two peptides, Fla(1)-1alphaE and Fla(31)-1alphaE, both incorporating a 10-methylisoalloxazine moiety as an artificial flavin molecule, were also prepared (Fla=2-[7-(10-methyl)isoalloxazinyl]-2-oxoethyl). Heme-1alphaK was successfully inserted into apomyoglobin to give Mb-1alphaK. Mb-1alphaK recognized the flavin-modified peptides and a two-alpha-helix structure was formed. In addition, an efficient ET from reduced nicotinamide adenine dinucleotide to the heme center through the flavin unit was observed. The ET rate was faster in the presence of Fla(1)-1alphaE than in the presence of Fla(31)-1alphaE or the equivalent molecule that has no peptide chain. These results demonstrate that the introduction of a functional chromophore on the Mb surface can be achieved by using specific peptide-peptide interactions. Moreover, the dependence of the ET rate on the position of the flavin indicated that the distance between the heme active site and the flavin chromophore was regulated by the three-dimensional structure of the designed polypeptide.  相似文献   

19.
Using 3-methyllumiflavin and tetraacetyliriboflavin as examples, we have shown that the socalled "fully oxidized" flavins can be "superoxidized" at an anodic potential of 1.8 to 1.9 V giving flavin radical cation transients which are rapidly transformed in subsequent chemical reactions. An attack by H2O subsequent to the superoxidation of 3-methyllumiflavin provides a route for the formation of 4a-hydroxy-3-methyllumiflavin radical cation, as evident from the subsequent decomposition to the protonated form of the starting flavin. When 3-methyllumiflavin is superoxidized in the presence of a base, a recycling process occurs, allowing superoxidized flavin to be trapped in a slower, competitive conversion. The relatively more stable trapped product is active in reacting with H2O2 to emit chemiluminescence. Electrochemical oxidation of H2O2 in acetonitrile at 1.30 V in the presence of an oxidized flavin results in a direct protonation of the flavin by H+ generated from the electrolysis of H2O2. Minor reactions presumably provide alternative formations of the 4a-hydroperoxy- and 4a-hydroxy-flavin radical cation transients by the direct addition of HOO. and HO. radicals, which also arise in the oxidation of H2O2, to protonated flavin. Under such conditions the superoxidized flavin radical cation is apparently also formed, either directly or by process(es) such as decomposition of the flavin 4a-adduct radical cations. Subsequent reductions of either the superoxidized flavin or the flavin 4a-adduct radical cations lead to an almost steady level of luminescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The relative positions and conformations of the prosthetic group FAD and the cofactor NADH have been remarkably conserved within the structurally diverse group of flavin enzymes. To provide a chemical rational for such an obviously optimal relative disposition of the redox partners for efficient reaction we have synthesized NADH models with Zn(II)-cyclen substituents for reversible flavin binding in water. Altogether, four of these model systems with systematically varying spacer length between the recognition site and the redox active dihydronicotinamide were prepared. The binding of these model systems to riboflavin tetraacetate was confirmed by potentiometric pH titration in water and their reaction with flavin was followed by UV-vis spectroscopy in aqueous media under physiological conditions. The measurements reveal a significant rate enhancement of up to 175 times that of an intermolecular reaction. Moreover, a strong dependence of the reaction rate on the spacer length was observed, which clearly shows that within the dynamic reversible assembly only the optimal relative disposition of the redox partners ensures an efficient redox reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号