首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 µg of sample. The in situ fusion was accomplished using 10 µL of a flux mixture 4.0% m/v Na2CO3 + 4.0% m/v ZnO + 0.1% m/v Triton® X-100 added over the cement sample and heated at 800 °C for 20 s. The resulting mould was completely dissolved with 10 µL of 0.1% m/v HNO3. Limits of detection were 0.11 µg g− 1 for Co, 1.1 µg g− 1 for Cr and 1.9 µg g− 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% (n = 5).  相似文献   

2.
A procedure for the electrothermal atomic absorption spectrometric determination of phosphorus in honey, milk and infant formulas using slurried samples is described. Suspensions prepared in a medium containing 50% v/v concentrated hydrogen peroxide, 1% v/v concentrated nitric acid, 10% m/v glucose, 5% m/v sucrose and 100 mg l− 1 of potassium were introduced directly into the furnace. For the honey samples, multiple injection of the sample was necessary. The modifier selected was a mixture of 20 μg palladium and 5 μg magnesium nitrate, which was injected after the sample and before proceeding with the drying and calcination steps. Calibration was performed using aqueous standards prepared in the same suspension medium and the graph was linear between 5 and 80 mg l− 1 of phosphorus. The reliability of the procedure was checked by comparing the results obtained by the new developed method with those found when using a reference spectrophotometric method after a mineralization step, and by analyzing several certified reference materials.  相似文献   

3.
This study proposes a procedure for determining sodium, potassium, calcium and magnesium in biodiesel samples by flame atomic absorption spectrometry (F AAS). The sample was prepared as a microemulsion without surfactant. The optimized composition of the microemulsion was 10% (w/v) biodiesel, 75% (v/v) n-propanol, 1% (v/v) concentrated nitric acid and 14% (v/v) of aqueous solution formed by 0.2% (v/v) of nitric acid and 0.5% (v/v) of ionization suppressor. Analyte signals in the samples as microemulsion were found to be stable for a period of 15 days. Analytical curves were obtained using organometallic standard solutions. The limits of detection (LOD) found for the proposed procedure were 0.1 µg g− 1, 0.01 µg g− 1, 0.04 µg g− 1, and 0.004 µg g− 1 for Na, K, Ca and Mg, respectively. The reference method established by ABNT (Brazilian Association of Technical Norms) NBR 15556:2008 was used to verify the accuracy of the proposed procedure. No significant statistical difference was found between the results obtained with the proposed and the chosen reference procedure. The proposed procedure showed no matrix influence when recovery tests were performed (89%-103%). The results found in this study show that the proposed procedure is a good alternative for determining Na, K, Ca, and Mg by F AAS in biodiesel samples.  相似文献   

4.
A highly sensitive mechanized method has been developed for the determination of mercury in milk by atomic fluorescence spectrometry (AFS). Samples were sonicated for 10 min in an ultrasound water bath in the presence of 8% (v/v) aqua regia, 2% (v/v) antifoam A and 1% (m/v) hydroxilamine hydrochloride, and after that, they were treated with 8 mmol l−1 KBr and 1.6 mmol l−1 KBrO3 in an hydrochloric medium. Atomic fluorescence measurements were made by multicommutation, which provides a fast alternative in quality control analysis, due to the easy treatment of a large number of samples (approximately 70 h−1), and is an environmentally friendly procedure, which involves a waste generation of only 94.5 ml h−1 as compared with the 605 ml h−1 obtained by using continuous AFS measurements. The limit of detection found was 0.011 ng g−1 Hg in the original sample. The method provided a relative standard deviation of 3.4% for five independent analysis of a sample containing 0.30 ng g−1 Hg. To validate the accuracy of the method, a certified reference material NIST-1459 (non-fat milk powder) containing 0.3±0.2 ng g−1 Hg was analysed and a value of 0.27±0.06 ng g−1 Hg was found. A comparison made between data found by the developed procedure and those obtained by microwave-assisted digestion and continuous AFS measurements evidenced a good comparability between these two strategies. Results obtained for commercially available milk samples varied between 0.09 and 0.61 ng g−1 Hg depending on the type of sample and its origin. The confluence of the analytical waste with a 6 mol l−1 NaOH allowed us to reduce the waste generation in a working session from 1 l to 5 g solid residue with a matrix of Fe(OH)3 which contributes to the deactivation of traces of heavy metals presents in the samples that does not form volatile hydrides.  相似文献   

5.
A simple and fast method for the determination of Se in biological samples, including food, by axial view inductively coupled plasma optical emission spectrometry using on-line chemical vapor generation (CVG–ICP OES) is proposed. The concentrations of HCl and NaBH4, used in the chemical vapor generation were optimized by factorial analysis. Six certified materials (non-fat milk powder, lobster hepatopancreas, human hair, whole egg powder, oyster tissue, and lyophilised pig kidney) were treated with 10 mL of aqua regia in a microwave system under reflux for 15 min followed by additional 15 min in an ultrasonic bath. The solutions were transferred to a 100 mL volumetric flask and the final volume was made up with water. The Se was determined directly in these solutions by CVG–ICP OES, using the analytical line at 196.026 nm. Calibration against aqueous standards in 10% v/v aqua regia in the concentration range of 0.5–10.0 µg L 1 Se(IV) was used for the analysis. The quantification limit, considering a 0.5 g sample weight in a final volume of 100 mL 1 was 0.10 µg g 1. The obtained concentration values were in agreement with the total certified concentrations, according to the t-test for a 95% confidence level.  相似文献   

6.
Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO3)2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO3)2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g−1) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g−1 for Cd, 18 pg and 17 ng g−1 for Pb, and 0.7 pg and 4 ng g−1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials.  相似文献   

7.
A procedure for the extraction and determination of methyl mercury and mercury (II) in fish muscle tissues and sediment samples is presented. The procedure involves extraction with 5% (v/v) 2-mercaptoethanol, separation and determination of mercury species by HPLC-ICPMS using a Perkin-Elmer 3 μm C8 (33 mm × 3 mm) column and a mobile phase 3 containing 0.5% (v/v) 2-mercaptoethanol and 5% (v/v) CH3OH (pH 5.5) at a flow rate 1.5 ml min−1 and a temperature of 25 °C. Calibration curves for methyl mercury (I) and mercury (II) standards were linear in the range of 0-100 μg l−1 (r2 = 0.9990 and r2 = 0.9995 respectively). The lowest measurable mercury was 0.4 μg l−1 which corresponds to 0.01 μg g−1 in fish tissues and sediments. Methyl mercury concentrations measured in biological certified reference materials, NRCC DORM - 2 Dogfish muscle (4.4 ± 0.8 μg g−1), NRCC Dolt - 3 Dogfish liver (1.55 ± 0.09 μg g−1), NIST RM 50 Albacore Tuna (0.89 ± 0.08 μg g−1) and IRMM IMEP-20 Tuna fish (3.6 ± 0.6 μg g−1) were in agreement with the certified value (4.47 ± 0.32 μg g−1, 1.59 ± 0.12 μg g−1, 0.87 ± 0.03 μg g−1, 4.24 ± 0.27 μg g−1 respectively). For the sediment reference material ERM CC 580, a methyl mercury concentration of 0.070 ± 0.002 μg g−1 was measured which corresponds to an extraction efficiency of 92 ± 3% of certified values (0.076 ± 0.04 μg g−1) but within the range of published values (0.040-0.084 μg g−1; mean ± s.d.: 0.073 ± 0.05 μg g−1, n = 40) for this material. The extraction procedure for the fish tissues was also compared against an enzymatic extraction using Protease type XIV that has been previously published and similar results were obtained. The use of HPLC-HGAAS with a Phenomenox 5 μm Luna C18 (250 mm × 4.6 mm) column and a mobile phase containing 0.06 mol l−1 ammonium acetate (Merck Pty Limited, Australia) in 5% (v/v) methanol and 0.1% (w/v) l-cysteine at 25 °C was evaluated as a complementary alternative to HPLC-ICPMS for the measurement of mercury species in fish tissues. The lowest measurable mercury concentration was 2 μg l−1 and this corresponds to 0.1 μg g−1 in fish tissues. Analysis of enzymatic extracts analysed by HPLC-HGAAS and HPLC-ICPMS gave equivalent results.  相似文献   

8.
The determination of Mn in diesel, gasoline and naphtha samples at µg L− 1 level by graphite furnace atomic absorption spectrometry, after sample stabilization in a three-component medium (microemulsion) was investigated. Microemulsions were prepared by mixing appropriate volumes of sample, propan-1-ol and nitric acid aqueous solution, and a stable system was immediately and spontaneously formed. After multivariate optimization by central composite design the optimum microemulsion composition as well as the temperature program was defined. In this way, calibration using aqueous analytical solution was possible, since the same sensitivity was observed in the optimized microemulsion media and 0.2% v/v HNO3. The use of modifier was not necessary. Recoveries at the 3 µg L− 1 level using both inorganic and organic Mn standards spiked solutions ranged from 98 to 107% and the limits of detection were 0.6, 0.5 and 0.3 µg L− 1 in the original diesel, gasoline and naphtha samples, respectively. The Mn characteristic mass 3.4 pg. Typical relative standard deviation (n = 5) of 8, 6 and 7% were found for the samples prepared as microemulsions at concentration levels of 1.3, 0.8, and 1.5 µg L− 1, respectively. The total determination cycle lasted 4 min for diesel and 3 min for gasoline and naphtha, equivalent to a sample throughput of 7 h− 1 for duplicate determinations in diesel and 10 h− 1 for duplicate determinations in gasoline and naphtha. Accuracy was also assessed by using other method of analysis (ASTM D 3831-90). No statistically significant differences were found between the results obtained with the proposed method and the reference method in the analysis of real samples.  相似文献   

9.
In this study, microwave-induced combustion (MIC) of extra-heavy crude oil is proposed for further chlorine and sulfur determination by inductively coupled plasma optical emission spectrometry (ICP OES). Combustion was carried out under oxygen pressure (20 bar) in quartz vessels using ammonium nitrate (50 µl of 6 mol l− 1 solution) as ignition aid. Samples were wrapped with polyethylene film and placed on a quartz holder positioned inside the quartz vessels. The need for an additional reflux step after combustion and the type and concentration of absorbing solution (water, 0.02 to 0.9 mmol l− 1 H2O2, 10 to 100 mmol l− 1 (NH4)2CO3 or 0.1 to 14 mol l− 1 HNO3) were studied. The influence of sample mass, O2 pressure and maximum pressure attained during the combustion process were investigated. Recoveries from 92 to 102% were obtained for Cl and S for all absorbing solutions. For comparison, Cl and S determination was also performed by ion chromatography (IC) using 25 mmol l− 1 (NH4)2CO3 as absorbing solution. Using MIC with a reflux step the agreement was better than 95% for certified reference materials of similar composition (crude oil, petroleum coke, coal and residual fuel oil). Microwave-assisted digestion and water extraction in high pressure closed vessels were also evaluated. Using these procedures the maximum recoveries were 30 and 98% for Cl and S, respectively, using microwave-assisted digestion and 70% for Cl and less than 1% for S by water extraction procedure. Limits of detection by ICP OES were 12 and 5 µg g− 1 for Cl and S, respectively, and the corresponding values by IC were 1.2 and 8 µg g− 1. Using MIC it was possible to digest simultaneously up to eight samples resulting in a solution suitable for the determination of both analytes with a single combustion step.  相似文献   

10.
A multi-element graphite furnace atomic absorption spectrometry (GFAAS) method was elaborated and applied for the simultaneous determination of As, Cd, Cr, Cu, and Pb in various kinds of honey samples (acacia, floral, linden, rape, and milkweed) using the transversally heated graphite atomiser (THGA) with end-capped tubes and integrated graphite platforms (IGPs). For comparative GFAAS analysis, direct (without digestion) and indirect (with digestion in a microwave oven) sample preparation procedures were tested. The effects of several chemical modifiers, such as NH4H2PO4, NH4H2PO4-Mg(NO3)2, and Pd(NO3)2-Mg(NO3)2, were studied to obtain optimal pyrolysis and atomization conditions for the set of analytes studied. The most efficient modifier was proved to be the mixture of 5 μg Pd (applied as nitrate) plus 3 μg Mg(NO3)2, allowing the optimal 600 °C pyrolysis and 2300 °C atomization temperatures. To prevent the sputtering and foaming of the matrix during the drying and pyrolysis steps of the furnace heating program, the sample and modifier solutions (20 + 5 μl, respectively) were dispensed together onto the IGP of the THGA pre-heated at 80 °C.The effect of increasing concentration of honey matrix was studied on the integrated absorbance (Aint) signals of analytes. The Aint signals of Cr and Pb were not altered up to 10% (m/v) matrix content in the sample solutions. The matrix effect was slightly suppressive on the Aint signals of As, Cd, and Cu above 2% (m/v) honey concentration. The recovery was found to be ranged between 85 and 115% for Cd, Cr, Cu, and Pb, whereas it was a lower, compromise value of 70-99% for As. The limit of detection (LOD) data were 1, 0.04, 0.09, 0.3, and 0.6 μg l−1 for As, Cd, Cr, Cu, and Pb, respectively, which values correspond to 20, 0.8, 1.8, 5.3, and 12 ng g−1, respectively, in the solid samples. The characteristic masses were found to be 21 pg As, 1.3 pg Cd, 4 pg Cr, 12 pg Cu, and 33 pg Pb. The As, Cd, Cr, Cu, and Pb contents of the studied 42 honey samples varied significantly, i.e. from below the LOD up to 13, 3.3, 109, 445, and 163 ng g−1, respectively.  相似文献   

11.
The concentration of trace metals in vegetable oils is an important criterion for the assessment of oil qualities with regard to freshness, keeping properties, storage and their influence on human nutrition and health. In this work, an effective and simple method for the determination of copper and lead in palm oil by stripping chronopotentiometry (SCP) is proposed. The metal ions were concentrated as their amalgams on the glassy carbon surface of a working electrode that was coated with a thin mercury film. An ultrasonic bath was used for the extraction of copper and lead from eleven oil samples using a 1:1 (v/v) mixture of concentrated hydrochloric acid and hydrogen peroxide. Efficient extraction of copper and lead (∼ 100%) was attained after 60 min of ultrasonic pre-treatment. A good correlation between the amount of sample and the time necessary for complete liberation of the metals was observed. The accuracy of the method was evaluated by means of a reference sample of skim milk powder containing trace elements (BCR 151). Quantitative analysis was carried out by the method of standard additions. Good linearity was obtained in the range of the concentrations examined. Detection limits of 13 and 50 ng g− 1 were found for Cu and Pb, respectively, in the palm oil samples. The average values found for the palm oil samples analyzed were in the range of < 0.013-2.67 µg g− 1 for copper and < 0.050-1.82 µg g− 1 for lead. The palm oil samples were also analyzed by graphite furnace atomic absorption spectrometry (GFAAS), demonstrating a very good correlation between the results.  相似文献   

12.
A procedure for determining germanium in soil samples using electrothermal atomic absorption spectrometry is discussed. The analyte is leached from the solid sample by the addition of 1 ml of concentrated hydrofluoric acid to 10-300 mg of sample, and the mixture is then submitted to a 10 min ultrasonic treatment. After adding 0.4 g boric acid and 3 ml concentrated hydrochloric acid, germanium is extracted into 1 ml chloroform and back-extracted into an aqueous phase containing (0.05%, w/v) nickel nitrate. Ten micro liter of aqueous phase are introduced into the atomizer and the analytical signal from germanium is obtained using a fast-heating cycle. The detection limit, calculated using three times the standard error of estimate (sy/x) of the calibration graph, is 0.015 μg g−1. The reliability of the procedure is verified by analyzing several certified reference materials.  相似文献   

13.
Kishida K  Furusawa N 《Talanta》2005,67(1):54-58
A simultaneous determination of sulfamonomethoxine, sulfadimethoxine, and their hydroxy/N4-acetyl metabolites in chicken plasma, muscle, liver, and eggs using gradient high-performance liquid chromatography (HPLC) with a photo-diode array detector is developed. All the compounds are extracted by a handheld ultrasonic homogenizer with ethanol followed by centrifugation. The separation is performed by a reversed-phase C4 column with a gradient elution (ethanol:1% (v/v) acetic acid, v/v; 10:90 → 20:80). Average recoveries from samples spiked at 0.1-1.0 μg g−1 or μg ml−1 for each drug were >90% with relative standard deviations within 4%. The limits of quantitation were <30 ng g−1 or ng ml−1.  相似文献   

14.
In the present study, cadmium and lead in the muscle, lung, liver and kidney of dolphins (Sotalia guianensis and Stenella clymene) of the Bahia coast in the northwest of Brazil were determined by graphite furnace atomic absorption spectrometry. Samples were digested using a diluted oxidant mixture (HNO3 + H2O2) with a microwave heating program performed in five steps. The optimized temperatures and chemical modifier for the pyrolysis and atomization were 700 °C, 1400 °C and Pd plus Mg for Cd, and 900 °C, 1800 °C and NH4H2PO4 for Pb, respectively. Characteristic masses and limits of detections (n = 20, 3σ) for Cd and Pb were 1.6 and 9.0 pg and 0.82 ng g− 1 and 0.50 ng g− 1, respectively. Repeatability ranged from 0.87 to 8.22% for Cd and 4.31 to 8.09% for Pb. The found concentrations presented no statistical differences at the 95% confidence level when compared with the ICP OES methods. Addition and recovery tests were also performed and the results ranged between 87 and 112% for both elements. Samples of cetacean Dolphinidae (S.guianensis and S.clymene) were analyzed, and the higher concentrations ranged from 0.09 to 46.2 µg g− 1 for Cd and 0.04 to 0.47 µg g− 1 for Pb in liver, and from 0.133 to 277 µg g− 1 for Cd in the kidney.  相似文献   

15.
This paper describes the use of dilute nitric acid for the extraction and quantification of arsenic species. A number of extractants (e.g. water, 1.5 M orthophosphoric acid, methanol-water and dilute nitric acid) were tested for the extraction of arsenic from marine biological samples, such as plants that have proved difficult to quantitatively extract. Dilute 2% (v/v) nitric acid was found to give the highest recoveries of arsenic overall and was chosen for further optimisation. The optimal extraction conditions for arsenic were 2% (v/v) HNO3, 6 min−1, 90 °C. Arsenic species were found to be stable under the optimised conditions with the exception of the arsenoriboses which degraded to a product eluting at the same retention time as glycerol arsenoribose. Good agreement was found between the 2% (v/v) HNO3 extraction and the methanol-water extraction for the certified reference material DORM-2 (AB 17.1 and 16.2 μg g−1, respectively, and TETRA 0.27 and 0.25 μg g−1, respectively), which were in close agreement with the certified concentrations of AB 16.4 ± 1.1 μg g−1 and TETRA 0.248 ± 0.054 μg g−1.To preserve the integrity of arsenic species, a sequential extraction technique was developed where the previously methanol-water extracted pellet was further extracted with 2% (v/v) HNO3 under the optimised conditions. Increases in arsenic recoveries between 13% and 36% were found and speciation of this faction revealed that only inorganic and simple methylated species were extracted.  相似文献   

16.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of selected elements (P, S, Fe, Cu, Zn and C) in thin sections of rat brain samples (thickness 20 μm). The sample surface was scanned (raster area ~ 2 cm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 μm, and irradiance 1 × 109 W cm− 2). The laser ablation system was coupled to a double-focusing sector field. The possibility was evaluated of using carbon (via measurement of 13C+) as an internal standard element for imaging element distribution as part of this method. The LA-ICP-MS images obtained for P, S, Fe Cu and Zn were quantified using synthetically prepared matrix-matched laboratory standards. Depending on the sample analyzed, concentrations of Cu and Zn in the control tissue were found to be in the range of 8–10 μg g− 1 and 10–12 μg g− 1, while in the tumor tissue these concentrations were in the range of 12–15 μg g− 1 and 15–17 μg g− 1, respectively. The measurements of P, S and Fe distribution revealed the depletion of these elements in tumor tissue. In all the samples, the shape of the tumor could be clearly distinguished from the surrounding healthy tissue by the depletion in carbon. Additional experiments were performed in order to study the influence of the water content of the analyzed tissue on the intensity signal of the analyte. The results of these measurements show the linear correlation (R2 = 0.9604) between the intensity of analyte and amount of water in the sample. The growth of a brain tumor was thus studied for the first time by imaging mass spectrometry.  相似文献   

17.
This work describes an analytical procedure for vanadium determination in human hair slurries by electrothermal AAS using longitudinal heating (LHGA) and transversal heating (THGA) graphite furnace atomizers. The samples were powdered using cryogenic grinding and the hair slurries containing 0.2% (m/v) were prepared in three different media for determination of vanadium: 0.14 mol L−1 HNO3, 0.1% (v/v) Triton X-100 and 0.1% (v/v) water soluble tertiary amines (CFA-C, pH 8). The limits of detection (LOD), limits of quantification (LOQ), and characteristic masses obtained were 0.28, 0.95 μg L−1 and 35 pg (LHGA) and 0.34, 1.13 μg L−1 and 78 pg (THGA), respectively. The accuracy of the analytical results obtained by the proposed procedure in both equipments was confirmed by a paired t-test at the 95% confidence level and compared with a conventional procedure based on acid digestion.  相似文献   

18.
Paper documents from XVIII and XIX centuries were analyzed by energy dispersive X-ray fluorescence. The presence of Co (400 µg g− 1), Ni (300 µg g− 1), As (2000 µg g− 1) and Bi (200 µg g− 1) in Dutch papers and a Hespe watermarked paper allowed distinguishing them from the rest of the papers. The elemental composition of the ink present in these documents was also studied with the same technique and it was concluded that these elements could not be originated from ink dissemination. Strong positive Spearman correlations between Co, Ni, As and Bi were found in all Dutch and Hespe watermarked papers. Potassium and Ca are the predominant elements in all analyzed papers. Their concentration levels also allowed differentiating between Dutch and Hespe papers and the rest of the papers. Other elements such as Ti, Fe, Cu, Zn, Ba and Pb were also found. In this work a bibliographic research about the possible origin of each one of the mentioned elements present in the papers is also reported.  相似文献   

19.
A simple and fast analytical procedure has been developed for the determination of As, Sb, Se, Te and Bi in milk samples by hydride generation atomic fluorescence spectrometry (HG-AFS). Samples were treated with aqua regia for 10 min in an ultrasound water bath and pre-reduced with KBr for total Se and Te determination or with KI and ascorbic acid for total As and Sb, the determination of Bi being possible in all with or without pre-reduction. Slurries of samples, in the presence of antifoam A, were treated with NaBH4 in HCl medium to obtain the corresponding hydrides, and AFS measurements were processed in front of external calibrations prepared and measured in the same way as samples. Results obtained by the developed procedure compare well with those found after microwave-assisted complete digestion of samples. The proposed method is simple and fast, and only 1 ml of milk is needed. The values obtained for detection limit are 2.5, 1.6, 3, 6 and 7 ng l−1 for As, Sb, Se, Te and Bi respectively in the diluted samples, with average relative standard deviation values of 3.8, 3.1, 1.9, 6.4 and 1.2% for three independent analysis of a series of commercially available samples of different origin. Data found in Spanish market samples varied from 3.2±0.3 to 11.3±0.2 ng g−1 As, from 3.1±0.2 to 11.6±0.4 ng g−1 Sb, from 10.7±0.5 to 25.5±0.4 ng g−1 Se, from 0.9±0.2 to 9.4±0.6 ng g−1 Te and from 11.5±0.1 to 27.7±0.4 ng g−1 Bi.  相似文献   

20.
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min− 1 sample flow-rate, calibration curves in the 0.1–0.5 mg L− 1 Cu, 0.5–4.0 mg L− 1 Fe, 0.5–4.0 mg L− 1 Mn, 0.2–1.0 mg L− 1 Zn, 10.0–100.0 mg L− 1 Ca, 5.0–40.0 mg L− 1 Mg and 50.0–250.0 mg L− 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89–103%, 84–107%, 87–103%, 85–105%, 92–106%, 91–114%, 96–114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L− 1 Ca, 0.4 mg L− 1 Mg, 0.4 mg L− 1 K, 7.7 µg L− 1 Cu, 7.7 µg L− 1 Fe, 1.5 µg L− 1 Mn and 5.9 µg L− 1 Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号