首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we firstly report a new electrolytic cold vapor generation system for mercury determination on Pt/Ti cathode in the presence of organic acid catholyte. Comparing with the traditional inorganic acid, formic acid increased the signal intensity of Hg vapor from electrolytic generation on Pt cathode and reduced the impact of cathode erosion on the stability of signal intensity. Moreover, formic acid has better interference tolerance. The introduction location for carrier gas is probably the most important factor that influences the signal intensity of Hg from electrolytic vapor generation. The effects of the electrolytic conditions and interference ions on the ECVG have been studied. Under the optimized conditions, the detection limit (3σ) of Hg (II) in aqueous solutions is 1.4 ng L−1; a relative standard deviation of 2.3% for 1 μg L−1 Hg was obtained. The accuracy of this method was verified by the determination of mercury in the certified reference materials. This system has been applied satisfactorily to the determination of Hg in Traditional Chinese Medicines samples.  相似文献   

2.
Two methods, based on hollow fiber liquid–liquid–liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L 1 and 0.4 μg L 1 (as Hg) with precisions (RSDs (%), c = 5 μg L− 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME–GFAAS and HF-LPME–GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L 1 was obtained. Finally, HF-LLLME–GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99–113%. In order to validate the method, HF-LLLME–GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish muscle, and the determined values were in good agreement with the certified values.  相似文献   

3.
Li X  Wang Z 《Analytica chimica acta》2007,588(2):179-183
A novel method for determination of mercury was developed using an intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry (IF-ECVG-AFS). The mercury vapor was generated on the surface of glassy carbon cathode in the flow cell. The operating conditions for the electrochemical generation of mercury vapor were investigated in detail, and the interferences from various ions were evaluated. Under the optimized conditions, no evident memory effects of mercury were observed. The calibration curve was linear up to 5 μg L−1 Hg at 0.54 A cm−2. A detection limit of 1.2 ng L−1 Hg and a relative standard deviation of 1.8% for 1 μg L−1 Hg were obtained. The accuracy of method was verified by the determination of mercury in the certified reference human hair. The ECVG avoided the use of reductants, thereby greatly reducing the contamination sources. In addition, the manifold of IF-ECVG-AFS was simple and amenable to automation.  相似文献   

4.
Kagaya S  Kuroda Y  Serikawa Y  Hasegawa K 《Talanta》2004,64(2):554-557
Addition of a sodium hypochlorite solution (9.2% (w/v)) was effective to reduce a sulfide interference in determination of organic mercury, including methylmercury and phenylmercury, as well as a previously reported determination of inorganic mercury by cold vapor atomic absorption spectrometry (CVAAS) in an alkaline medium. Total mercury ranging from 0.17 to 33 μg L−1 in 15 mL of sample solutions containing up to 200 mg L−1 of sulfide can be determined without any serious interference by sulfide when 1 mL of the sodium hypochlorite solution was added after dilution of the sample solution to 25 mL. The proposed method was simple and rapid because no digestion processes were required for the determination of total mercury; the time required for the determination was only about 5 min. The proposed method was applicable to the analysis of treated waste water.  相似文献   

5.
Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 µg L− 1 (compared to 2.1 µg L− 1 for a previously reported system in the absence of trapping) with a precision of 11% for a 10 µg L− 1 mercury standard (RSD, N = 5).  相似文献   

6.
Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2′-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4 M HNO3. The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 μmol g−1 for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 μg L−1 (3σ), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 μg L−1 Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.  相似文献   

7.
Bendl RF  Madden JT  Regan AL  Fitzgerald N 《Talanta》2006,68(4):1366-1370
A method for the determination of mercury via UV photoreduction has been investigated. Mercury vapor was generated by the reduction of mercury species in an acetic acid solution using UV radiation. Detection of the volatile mercury was accomplished by atomic absorption spectrometry. An optimized system was found to provide a detection limit (defined as the concentration giving a signal equal to three times the standard deviation of the blank) of 2.1 μg L−1 with a precision of 2.9% relative standard deviation (n = 8) for a 500 μg L−1 mercury standard. The effect of various metal ions on the mercury signal was investigated and the method validated with a NRCC certified dogfish liver material (DOLT-3) using the method of standard additions. A reaction pathway is hypothesized for UV photoreduction.  相似文献   

8.
A novel on-line coupled capillary electrophoresis (CE) cold vapor generation (CVG) with electrothermal quartz tube furnace atomic absorption spectrometry (EQTF-AAS) system for mercury speciation has been developed. The mercury species (inorganic mercury and methylmercury) were completely separated by CE in a 80 cm length × 100 μm i.d. fused-silica capillary at 20 kV and using a buffer of 100 mM boric acid and 10% (v/v) methanol (pH 8.30). The effects of the inner diameter of quartz tube, the acidity of HCl, the NaBH4 concentration and N2 flow rate on Hg signal intensity were investigated. Speciation of mercury was highlighted using CE-CVG-EQTF-AAS. The detection limits of methylmercury and mercury were 0.035 and 0.027 μg mL−1, respectively. The precisions (RSDs) of peak height for six replicate injections of a mixture of 10 μg mL−1 (as Hg) were better than 4%. The interface was used for speciation analysis of mercury in dry goldfish muscle.  相似文献   

9.
An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL− 1 Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 рg mL− 1 (3σ). The accuracy of the method was evaluated through analysis of the reference materials GBW09101 (Human hair) and GBW 08517 (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.  相似文献   

10.
Simple and rapid analytical procedures for the determination of Hg2+ and methylmercury in fish were proposed after careful optimization of chemical and instrumental parameters for Hg measurement by cold vapor (CV)/hydride generation (HG) atomic absorption spectrometry (AAS) and CV/HG inductively coupled plasma atomic emission spectrometry (ICP-AES). Quantitative extraction of Hg species avoiding any inter-species conversion was achieved by fast microwave assisted solubilization of fish tissue with relatively low amount of tetramethylammonium hydroxide (TMAH) or 6 mol L− 1 HCl. After careful optimization of chemical parameters selective determination of Hg2+ in the presence of excess of methylmercury is attained by using continuous flow CV AAS, 1% m/V SnCl2 as reductant and 0.1 mol L− 1 HCl as reaction medium. Simple calibration curve prepared with aqueous standard of Hg2+ is recommended for its quantification. Both Hg2+ and methylmercury could be determined simultaneously with equal sensitivity by CV/HG ICP-AES directly in the diluted TMAH solution obtained after extraction with 1% m/V NaBH4 as reductant. Quantification of the sum of Hg2+ and methylmercury against calibration curve prepared with aqueous standard of methylmercury is suggested. It should be mentioned that batch hydride generation system with quartz tube heated in air/acetylene flame could also be used for simultaneous determination of both Hg species in fish extracts, with standard additions calibration. The validity of the developed analytical procedures for selective determination of Hg2+ and methylmercury (by difference between the total Hg and Hg2+) is confirmed by the analyses of certified reference material DOLT-1 and reference material IMEP-20. Very close agreement between certified values and analytical results was found.  相似文献   

11.
A novel method based on photo-induced chemical vapor generation (CVG) as interface to on-line coupled Hg-cysteine ion chromatograpy (IC) with atomic fluorescence spectrometry (AFS) was developed for rapid determination of methylmercury (MHg) in seafood. Separation of inorganic mercury (Hg2+) and methylmercury(CH3Hg+) was accomplished on a Hamilton PRP X-200 polymer-based exchange column with a mobile of 3% acetonitrile, 1% (w/w) L-cysteine and 20 mmol L− 1 pyridine and 160 mmol L− 1 formic acid, at pH 2.4 within 7 min. Once separated, both species are reduced by formic acid in mobile phase under UV radiation to convert Hg0 on-line, which is subsequently swept (by argon carrier gas) into an atomic fluorescence spectrometry (AFS) for measurement. Under the optimized experiment conditions, the detection limits (as Hg), based on three times the standard deviation of a standard solution, were found to be 0.1 ng mL− 1 for mercury and 0.08 ng mL− 1 for methylmercury, with an injection volume of 100 μL. The developed method was validated by determination of certified reference material DORM-2 and was further applied in determination of seafood samples.  相似文献   

12.
Jairo L. Rodrigues 《Talanta》2010,80(3):1158-162
Despite the necessity to differentiate chemical species of mercury in clinical specimens, there are a limited number of methods for this purpose. Then, this paper describes a simple method for the determination of methylmercury and inorganic mercury in blood by using liquid chromatography with inductively coupled mass spectrometry (LC-ICP-MS) and a fast sample preparation procedure. Prior to analysis, blood (250 μL) is accurately weighed into 15-mL conical tubes. Then, an extractant solution containing mercaptoethanol, l-cysteine and HCl was added to the samples following sonication for 15 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 5 min on a C18 reverse-phase column with a mobile phase containing 0.05% (v/v) mercaptoethanol, 0.4% (m/v) l-cysteine, 0.06 mol L−1 ammonium acetate and 5% (v/v) methanol. The method detection limits were found to be 0.25 μg L−1 and 0.1 μg L−1 for inorganic mercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). The proposed method was also applied to the speciation of mercury in blood samples collected from fish-eating communities and from rats exposed to thimerosal. With the proposed method there is a considerable reduction of the time of sample preparation prior to speciation of Hg by LC-ICP-MS. Finally, after the application of the proposed method, we demonstrated an interesting in vivo ethylmercury conversion to inorganic mercury.  相似文献   

13.
We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C9H9HgNaO2S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH4 solution, and AFS detection in an Ar/H2 miniaturized flame. The method was linear in the 0.01–2 μg mL−1 range, with a LOD of 0.003 μg mL−1. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL−1.  相似文献   

14.
Speciation analyses are of increasing interest in the environmental, toxicological and analytical fields, because the toxicity and reactivity of trace elements depend strongly on the chemical forms in which they are present. A simple electrodeposition–electrothermal atomic absorption spectrometry method for speciation analysis of some organic and inorganic selenium species in typical environmental water and agricultural soil samples has been developed. The method is based on the selective reduction of water-soluble Se(IV) and selenocystine (Se–Cys) species by an uncontrolled applied potential (1.8 V) on a mercury-coated electrode. In acidic media (1.0 M HCl solution) the only inorganic selenium species electrodeposited was Se(IV), and, of the water-soluble organic selenium species Se–Cys and Se–Met only Se–Cys was electrodeposited onto the mercury electrode surface. The proposed methodology was successfully applied to the speciation and determination of selenium in a few environmental samples. The spiked recovery value varied between 91% and 99%. The suggested method has been shown to have a characteristic mass (m0) of 25 pg, a limit of detection (LOD) of 1.0 μg L− 1 and a relative standard deviation (RSD%) of 3.5% for 6 measurements at a concentration of 100 μg L− 1 Se(VI).  相似文献   

15.
This work demonstrated the feasibility of mercury speciation analysis by anion exchange chromatographic separation with inductively coupled plasma mass spectrometry detection. For the first time, by complexing with the mobile phase containing 3-mercapto-1-propanesulfonate into negatively charged complexes, fast separation of inorganic mercury (Hg2+), monomethylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) was achieved within 5 min on a 12.5-mm strong anion exchange column. The detection limits for Hg2+, MeHg, EtHg and PhHg were 0.008, 0.024, 0.029 and 0.034 μg L−1, respectively. The relative standard deviations of peak height and peak area (5.0 μg L−1 for each Hg species) were all below 3%. The determined contents of Hg2+, MeHg and total Hg in a certified reference material of fish tissue by the proposed method were in good accordance with the certified values with satisfactory recoveries. The relative errors for determining MeHg and total mercury were −2.4% and −1.2%, respectively, with an acceptable range for spike recoveries of 94–101%. Mercury speciation in 11 fish samples were then analyzed after the pretreated procedure. The mercury contents in all fish samples analyzed were found compliant with the criteria of the National Standards of China.  相似文献   

16.
Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H2 miniaturized flame after sodium borohydride reduction to Hg0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H2 microflame was investigated.The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10? 5 mol L? 1), thus allowing the organic/inorganic mercury speciation.The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L? 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L? 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection-chemical vapor generation atomic fluorescence spectrometry method was validated by analyzing the TORT-1 certificate reference material, which contains only monomethylmercury, and obtaining 83 ± 5% of monomethylmercury recovered, respectively. This method was also applied to the determination of monomethylmercury in saliva samples.  相似文献   

17.
A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg2+ was complexed with I to form HgI42−, and the HgI42− reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg+) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L− 1 HNO3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg+ by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg+. The MeHg+ in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg+ with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg+, respectively. The limits of detection (LODs) were 56.3 ng L− 1 for Hg(II) and 94.6 ng L− 1 for MeHg+ (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg+ (C = 10 μg L−1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2–108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.  相似文献   

18.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

19.
A rugged and reliable method for the determination of mercury in coal without sample digestion, based on chemical vapor generation (cold vapor technique) from slurried coal samples has been developed. It involves collection of the mercury vapor in a graphite tube, treated with gold or rhodium as permanent modifier, and determination by electrothermal atomic absorption spectrometry. Mercury quantitatively leached out of the investigated coal reference materials into 1 mol l−1 nitric acid within 48 h when the coal was ground to a particle size of ≤50 μm, except for one sample (BCR 180), which had to be ground to ≤30 μm, or a leaching time of 72 h had to be used. No detectable quantity of mercury was generated directly from the slurry particles, but it was not necessary to filter the solution. The greatest advantage of the method is that only a minimum of reagents and sample handling steps are required, a prerequisite for accurate results in routine analysis. The results were well within the 95% confidence level of the certificate or close to the information value of the reference materials investigated. The characteristic mass of 110 pg obtained with gold as the permanent modifier is close to values reported for direct analysis of solutions, showing close to 100% trapping efficiency for mercury. A limit of detection (LOD) of 90 pg absolute was obtained with this modifier, which corresponds to an LOD of 0.009 μg g−1 Hg in coal. This is based on 1 ml of slurry containing 10 mg of coal, and is an order of magnitude lower than the lowest mercury content in the investigated reference materials.  相似文献   

20.
A simple and sensitive method with a fast sample preparation procedure is proposed for the determination of mercury species in plasma/serum. The method combines online high-performance liquid chromatography separation, Hg cold-vapor formation and inductively coupled plasma mass spectrometry detection. Prior to analysis, plasma (250 μL) was accurately pipetted into 15 mL conical tubes. Then, an extractant solution containing mercaptoethanol, L-cysteine and HCl was added to the samples following sonication for 10 min. Quantitative mercury extraction was achieved with the proposed procedure. Separation of mercury species was accomplished in less than 8 min on a C8 reverse phase column with a mobile phase containing 3% v/v methanol + 97% v/v (0.5% v/v 2-mercaptoethanol + 0.05% v/v formic acid). The method detection limits were found to be 12 ng L−1, 5 ng L−1 and 4 ng L−1 for inorganic mercury, ethylmercury and methylmercury, respectively. Method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from NIST. Additional validation was provided by the analysis of a secondary reference serum sample from the INSQ-Canada. Finally, the method was successfully applied for the speciation of mercury in plasma samples collected from volunteers exposed to methylmercury through fish consumption. For the first time to our knowledge, levels of different species of Hg in plasma samples from riverside populations exposed to MeHg were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号