首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymetallic [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl](PF6)2 complex (bpy = 2,2′-bipyridine, BPE = trans-1,2-bis(4-pyridil)ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru3O] moiety with a [Ru(bpy)2(BPE)Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl]2+ doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)2(BPE)] charge-transfer bands and to the [Ru3O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at −1.07 V, 0.13 V, 1.17 V, 2.91 V and −1.29 V (vs SHE) assigned to the [Ru3O]−1/0/+1/+2/+3 and to the bpy0/−1 redox processes; also a wave is observed at 0.96 V, assigned to the Ru+2/+3 pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the π-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.  相似文献   

2.
A new three-component catalytic system, PdCl2/phen/M(CF3SO3)n where M = La, Y, Yb, Zn, and Cu, was studied for the copolymerization of norbornene (NBE) with CO to prepare polyketone (PK). It was found that the CF3SO3H catalytic system gave a low catalytic activity for the copolymerization of norbornene with CO, but when M(CF3SO3)n was introduced instead of CF3SO3H, the PdCl2/phen/M(CF3SO3)n catalytic system exhibited much higher activity. The effects of ligands, M(CF3SO3)n, solvents, and temperatures on the copolymerization have been discussed in detail. The results showed that with 1,10-phenanthroline (phen) and Cu(CF3SO3)2 used as cocatalysts, the corresponding reaction rate reached 82 000 g PK (mol Pd)−1h−1 when the reaction was carried out in methanol at 90°C and 3.0 MPa of CO, and the weight average molecular weight (M w) of the resultant copolymer is 1090 g/mol. The copolymer was characterized with various techniques such as FT-IR, 1HNMR, 13CNMR, TGA, and DSC. The infrared spectrum of the product includes two features at 1697 and 1732 cm−1 for the NBE/CO copolymer in CH3OH that are attributed to carbonyl groups in ketones (repeating unit) and esters (end group), respectively. Due to the tension of the ring of norbornene, the degree of copolymerization is not high. Published in Russian in Kinetika i Kataliz, 2007, Vol. 48, No. 1, pp. 51–58. This article was submitted by the authors in English.  相似文献   

3.
The reaction of Ru3(CO)12 with 2(diphenylphosphino)ethyl-triethoxysilane (DPTS) in hydrocarbons, leads to the functionalized Ru3(CO)12−n [Ph2P(CH2)2Si(OEt3)] n (n = 1,2) complexes. The complex with two phosphine substituents was chemically anchored on mesoporous silicas, SBA-15 and MCM-41, in order to obtain two hybrid materials characterized by a different localization of the metal centre on the surface of the porous supports. A detailed investigation of the cluster, before and after chemical anchoring on the mesoporous silicas, was pursued. Particular attention was also devoted to the study of the morphological, structural and textural properties of the metal-functionalised silicas (Ru/SBA-15 and Ru/MCM-41) by infrared spectroscopy (FT-IR), scanning electron microscopy, X-ray diffraction and N2 physisorption analysis.  相似文献   

4.
Reaction of [Ru6C(CO)16]2− with an excess of AgX (X = Cl, Br or I) affords heteronuclear clusters of formula [{Ru6C(CO)16Ag2X}2]2− in 80% yield, which for X = I and X = Br/Cl were crystallographically characterised. The formation of the cluster was followed in solution using electrospray ionisation mass spectrometry (ESI-MS), which revealed the presence of a wide range of clusters with the general formula [{Ru6C(CO)16} x Ag y X z ](2x−y+z)− where x = 1 or 2, y = 1, 2, 3 or 4 and z = 0, 1 or 2. The high yield of the product despite the evident complicated solution speciation is attributed to selective crystallisation of the observed compound driving the equilibrium toward this product.  相似文献   

5.
A controlled substitution reaction of the chlorine atoms of 1,3,5-benzenetricarbonyl trichloride by the organoiron fragment (CpFe(CO)2S) has been achieved. The complexes CpFe(CO)2SCO-3,5-C6H3(COCl)2 (1), 1,3-[CpFe(CO)2SCO]2-5-C6H3COCl (2) and 1,3,5-[CpFe(CO)2SCO]3C6H3 (3) were prepared from the reaction of (μ-S x )[CpFe(CO)2]2 (x = 3, 4) with 1,3,5-C6H3(COCl)3 in a 1:1, 2:1, or 3:1 metal to ligand molar ratio. The reactions of (1) with amines, thiols, and carboxylic acids produce the trifunctional mono-iron complexes CpFe(CO)2SCO-3,5-C6H3(COY)2 [Y = NR2 (4), SR (5), OCOR (4)]. The X-ray structure determination of (1) is reported.  相似文献   

6.
A green heteropolyblue compound, (PPh4)4[PMo12O40] · 3DMF(1), has been synthesized from MoO3, H2O2 and H3PO4 in acetylacetone medium and crystallized from N,N-dimethylformamide. Compound 1 was characterized by analytical and spectroscopic methods, and X-ray structure analysis. The compound is a one-electron paramagnet and shows a featureless and cubic EPR spectrum with <g> = 1.95 in DMF glass. The complex shows a Mo(V)–Mo(IV) couple, which has been studied by cyclic voltammetric and coulometric methods. The compound acts as an efficient olefin epoxidation catalyst with H2O2 as oxidant and NaHCO3 as co-catalyst. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Four new triphenylgermylruthenium carbonyl compounds HRu(CO)4GePh3, 14; Ru(CO)4(GePh3)2, 15; Ru2(CO)8(GePh3)2, 16; and Ru3(CO)9(GePh3)3(μ-H)3, 17 were obtained from the reaction of Ru(CO)5 with Ph3GeH in hexane solvent at reflux, 68 °C. The major product 14 was formed by loss of CO from the Ru(CO)5 and an oxidative addition of the GeH bond of the Ph3GeH to the metal atom. This six coordinate complex contains one terminal hydrido ligand. Compound 15 is formed from 14 and contains two trans-positioned GePh3 ligands in the six coordinate complex. Compound 16 contains two Ru(CO)4(GePh3) fragments joined by an Ru–Ru single bond. Compound 17 contains a triangular cluster of three ruthenium atoms with three bridging hydrido ligands and one terminal GePh3 ligand on each metal atom. When heated to 125 °C, 14 was converted to the new triruthenium compound Ru3(CO)10(μ-GePh2)2, 18. Compound 18 consists of a triangular tri-ruthenium cluster with two GePh2 ligands bridging two different edges of the cluster and one bridging CO ligand. Ru3(CO)12 was found to react with Ph3GeH at 97 °C to yield three products: 15, and two new compounds Ru3(CO)9(μ-GePh2)3, 19 and Ru2(CO)6(μ-GePh2)2(GePh3)2, 20 were obtained. Compound 19 is similar to 18 having a triangular tri-ruthenium cluster but has three bridging GePh2 ligands, one on each Ru–Ru bond. Compound 20 contains only two ruthenium atoms joined by a single Ru–Ru bond that has two bridging GePh2 ligands and a terminal GePh3 ligand on each metal atom. All compounds were characterized by a combination of IR, 1H NMR, single-crystal X-ray diffraction analyses. This report is dedicated to Professor Dieter Fenske on the occasion of his 65th birthday for his many pioneering contributions to the chemistry of metal chalcogenide cluster complexes.  相似文献   

8.
The purpose of this work was to indirect label IgG with fac-[188Re(CO)3(H2O)3]+ and to check the radiochemical behavior of the labeled product. The compound of (bis(2-pyridylmethyl)-amino)-acetic acid (L2H) was synthesized and labeled with fac-[188Re(CO)3(H2O)3]+. The labeling yield of 188Re(CO)3–L2H was more than 90%. The effects of protein concentration, reaction time, pH and reaction temperature of labeling of IgG with 188Re(CO)3–L2H were investigated. The conjugation conditions were optimized. The labeled product was analyzed by size exclusion HPLC and TLC. The stability of 188Re(CO)3–L2H–IgG in vitro was high. The results of this study may be useful for [188Re(CO)3(H2O)3]+ labeling of protein for radioimmunotherapy.  相似文献   

9.
RuCl2(DMSO)2(NC5H4CO2Na-3)2 is very soluble in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium tetrafluoroborate, [(BMIM)BF4]. The complex was prepared by reacting RuCl2(DMSO)4 with NC5H4CO2Na-3, sodium nicotinate, in toluene, and was characterized by spectroscopic methods. The complex catalyzes the hydrogenation of 1-hexene (600 psi H2, 100 °C) in a two-phase system consisting of cyclohexane/[(BMIM)BF4] with 75% conversion in 24 h and modest substrate isomerization. The complex shows good stability and can be reused several times with little loss in activity.  相似文献   

10.
The complex of [Nd(BA)3bipy]2 (BA = benzoic acid; bipy = 2,2′-bipyridine) has been synthesized and characterized by elemental analysis, IR spectra, single crystal X-ray diffraction, and TG/DTG techniques. The crystal is monoclinic with space group P2(1)/n. The two–eight coordinated Nd3+ ions are linked together by four bridged BA ligands and each Nd3+ ion is further bonded to one chelated bidentate BA ligand and one 2,2′-bipyridine molecule. The thermal decomposition process of the title complex was discussed by TG/DTG and IR techniques. The non-isothermal kinetics was investigated by using double equal-double step method. The kinetic equation for the first stage can be expressed as dα/dt = A exp(−E/RT)(1 − α). The thermodynamic parameters (ΔH , ΔG , and ΔS ) and kinetic parameters (activation energy E and pre-exponential factor A) were also calculated.  相似文献   

11.
The first part of this paper deals with the morphology of the MoS2 phase and its oxide precursor, the MoO3 phase, mainly from a geometrical point of view. After giving a brief review of the literature describing the structure of these compounds, Mo densities in both phases were calculated along various crystallographic planes. Further, using structural models recently proposed by others, Mo densities in MoS2 were also calculated in the case of an epitactic growth on γ-Al2O3 and TiO2 model surfaces. Then, the calculated Mo densities were compared with experimental results (Mo density when HDS activity is maximal) previously obtained for catalysts constituted of MoS2 supported on a low SSA TiO2, a high SSA TiO2 and a conventional γ-alumina. It was suggested that either on alumina or titania the MoS2 phase is growing as (100) MoS2 planes. However, while on the alumina the optimal MoS2 phase might be constituted of dispersed MoS2 slabs covering only a part of the alumina surface (2.9–3.9 Mo atoms/nm2), on titania the optimal MoS2 phase might be constituted of a uniform MoS2 monolayer (5.2 atoms/nm2 for the high SSA titania, which is equal to the Mo density of a perfect MoS2 (100) plane). This difference may originate in the creation of a 'TiMoS' phase enhancing the S atoms mobility over Mo/TiO2-sulfided catalysts. Indeed, while in the case of a γ-alumina carrier the active sites (labile S atoms) are located on the edge of MoS2 slabs making the ratio Moedge/Mototal a crucial parameter for the catalytic performances, in the case of a titania carrier the labile sulfur atoms might be statistically distributed all over the TiMoS active phase. Further, the higher Mo density observed over the high SSA titania (5.2 atoms/nm2) when compared to that over the low SSA titania (4.2 atoms/nm2) was supposedly due to the pH-swing method advantageously used to prepare the former carrier. Indeed, this method allows giving a solid with enhanced mechanical properties providing a good stability to the derived catalysts under experimental conditions. In addition, this TiO2 carrier exhibits a great homogeneity, with a surface structure substantially uniform, which might be adequate for a long-range growth of (100) MoS2 slabs.  相似文献   

12.
The new complexes [(η3-Me2CCMeCH2)Pd{η2-Ph2P(S)CHP(S)Ph2] (1), [(η3-Me2CCMeCH2)Pd{η2-OC(CF3) CHCO(C4H3S)}] (2) and [(η3-CH2CMeCH2)Pd{η2-OC(CF3)CHCO(C4H3S)}] (3) have been synthesized by reacting [(η3-allyl)Pd(μ-Cl)]2 with Ph2P(S)CH2P(S)Ph2 and OC(CF3)CH2CO(C4H3S) in the presence of base. All have been characterized by elemental analysis, FT-IR, 1H-n.m.r and FAB-mass spectroscopy. Spectroscopic studies suggest that both ligands are bidentate, forming six-membered Pd-S-P-C-P-S and Pd-O-C-C-C-O palladacycles, the η3-allyl group completing the coordination sphere.  相似文献   

13.
In this paper, we investigated three ligand systems, symmetric and asymmetric pyridyl-containing tridentate ligands (L1NH2 = (bis(2-pyridylmethyl)-amino)-ethylamine, L2H = (bis(2-pyridylmethyl)-amino)-acetic acid, L3NH2 = [(6-amino-hexyl)-pyridyl-2-methyl-amino]-acetic acid) as bifunctional chelating agents for labeling biomolecules. These ligands reacted with the precursor fac-[188Re(CO)3(H2O)3]+ and yielded the radioactive complexes fac-[188Re(CO)3L] (L = three ligands), which were identified by RP-HPLC. The corresponding stable rhenium tricarbonyl complexes (1–3) were allowed for macroscopic identification of the radiochemical compounds. 188Re tricarbonyl complexes, with log P o/w values ranging from −1.36 to −0.32, were obtained with yields of ≥90% using ligand concentrations within the 10−6−10−4M range. Challenge studies with cysteine and histidine revealed the high stability properties of these radioactive complexes, and biodistribution studies in normal mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, primarily through the renal-urinary pathway. In summary, these asymmetric and symmetric pyridyl-containing tridentate ligands are potent bifunctional chelators for the future biomolecules labeling of fac-[188Re(CO)3(H2O)3]+.  相似文献   

14.
The macroporous Li3V2(PO4)3/C composite was synthesized by oxalic acid-assisted carbon thermal reaction, and the common Li3V2(PO4)3/C composite was also prepared for comparison. These samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical performance tests. Based on XRD and SEM results, the sample has monoclinic structure and macroporous morphology when oxalic acid is introduced. Electrochemical tests show that the macroporous Li3V2(PO4)3/C sample has a high initial discharge capacity (130 mAh g−1 at 0.1 C) and a reversible discharge capacity of 124.9 mAh g−1 over 20 cycles. Moreover, the discharge capacity of the sample is still 91.5 mAh g−1, even at a high rate of 2 C, which is better than that of the sample with common morphology. The improvement in electrochemical performance should be attributed to its improved lithium ion diffusion coefficient for the macroporous morphology, which was verfied by cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

15.
Thermolysis of double complex salt [Pd(NH3)4][AuCl4]2 has been studied in helium atmosphere from ambient to 350 °C. The XAFS of Pd K and Au L3 edges and thermogravimetry measurements have been carried out to characterize the intermediates and the final product. In the temperature range 115–160 °C the complex is decomposed to form Pd(NH3)2Cl2 and AuCl4−x N x species with x ranging from 2 to 3. Subsequent heating of the intermediate up to 300 °C leads to the total loss of NH3. The Au–Cl and Au–Au bonds form the local environment of Au at the stage of decomposition while only four chlorine atoms are around Pd. At the temperature of 330 °C the Au and Pd nanoparticles as well as residues of palladium chloride are detected. The final product consists of separated Au and Pd nanoparticles.  相似文献   

16.
cis-[Co(bipy)2(CN)2] complex was successfully prepared from the reaction of [Co(CN)2] with 2,2′-bipyridine in ethanol 96%. The product of complex synthesized was light brown crystal with percent yield of 75.86%. The IR spectrum of this complex showed strong characteristics vibration band at 1471.9 and 1442.75 cm−1 for C=N stretching, 1664.57 cm−1 for C=C aromatic, 1600.9 cm−1 1 for HC=CH aromatic, 653.87 cm−1 for pyridine ring on 2,2′-bipyridine ligand, 3109.25 and 3080.32 cm−1 for C-H of aromatic ring. The thermogram of DTA-TG analysis showed 4 endothermic peaks at temperature of 53.4, 323.2, 444.2, and 526.4°C, where the bond breaking of the complex occurred at different temperatures. The result of moment magnet measurement of the complex showed that it was a high spin complex with moment magnet value of 3.68 BM, so it is a paramagnetic complex.  相似文献   

17.

Abstract  

Direct reductive amination of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde and 3-(4-methylphenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde with various substituted aromatic amines using NaBH4 in the presence of I2 as reducing agent is described. The reaction has been carried out in anhydrous methanol under neutral conditions at room temperature. The structure of newly synthesized diphenyl pyrazolylmethylanilines was established on the basis of IR, 1H, 13C NMR, and mass spectral data. All diphenyl pyrazolylmethylaniline derivatives were tested in vitro for their antifungal and antibacterial activity against different strains of fungi and bacteria. Most of the compound exhibited considerable antifungal activity but poor antibacterial activity against the test strains.  相似文献   

18.
For getting an insight into the mechanism of atmospheric autoxidation of sulfur(IV), the kinetics of this autoxidation reaction catalyzed by CoO, Co2O3 and Ni2O3 in buffered alkaline medium has been studied, and found to be defined by Eqs. I and II for catalysis by cobalt oxides and Ni2O3, respectively.
(I)
(II)
The values of empirical rate parameters were: A{0.22(CoO), 0.8 L mol−1s−1 (Co2O3)}, K 1{2.5 × 102 (Ni2O3)}, K 2{2.5 × 102(CoO), 0.6 × 102 (Co2O3)} and k 1{5.0 × 10−2(Ni2O3), 1.0 × 10−6(CoO), 1.7 × 10−5 s−1(Co2O3)} at pH 8.20 (CoO and Co2O3) and pH 7.05 (Ni2O3) and 30 °C. This is perhaps the first study in which the detailed kinetics in the presence of ethanol, a well known free radical scavenger for oxysulfur radicals, has been carried out, and the rate laws for catalysis by cobalt oxides and Ni2O3 in the presence of ethanol were Eqs. III and IV, respectively.
(III)
(IV)
For comparison, the effect of ethanol on these catalytic reactions was studied in acidic medium also. In addition, alkaline medium, the values of the inhibition factor C were 1.9 × 104 and 4.0 × 10L mol−1 s for CoO and Co2O3, respectively; for Ni2O3, C was only 3.0 × 102 only. On the other hand, in acidic medium, the values of this factor were all low: 20 (CoO), 0.7 (Co2O3) and 1.4 (Ni2O3). Based on these results, a radical mechanism for CoO and Co2O3 catalysis in alkaline medium, and a nonradical mechanism for Ni2O3 in both alkaline and acidic media and for cobalt oxides in acidic media are proposed.  相似文献   

19.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

20.
New complexes cis-[M(CO)4-DABRd] (M = Cr(I), Mo(II) and fac-[M(CO)3-SAT] (M = Cr(III), Mo(IV)) have been synthesized by the photochemical reactions of cis-[(η4-NBD)M(CO)4] (NBD is norbornadiene; M=Cr, Mo) with 5-(4-dimethylaminobenzylidene) rhodanine (DABRd) and salicylidene-3-amino-1,2,4-triazole (SAT) ligands and characterized by elemental analysis, FT-IR and 1H NMR spectroscopy, and mass spectrometry. The spectroscopic studies show that the DABRd ligand acts as a bidentate ligand coordinating via both NH-(S)C=S sulfur donor atoms in I and II and SAT ligand behaves as a tridentate ligand coordinating via its all imine nitrogen-C=N-donor atoms in III and IV to the metal center. The article was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号