首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel dual-ligand reagent (2Z)-N,N′-bis(2-aminoethylic)but-2-enediamide, was synthesized and applied to prepare metal ion-imprinted polymers (IIPs) materials by ionic imprinted technique for selective solid-phase extraction (SPE) of trace Cd(II) from aqueous solution. In the first step, Cd(II) formed coordination linkage with the two ethylenediamine groups of the synthetic monomer. Then the complex was copolymerized with pentaerythritol triacrylate (crosslinker) in the presence of 2,2′-azobisisobutyronitrile as initiator. Subsequently, the imprinted Cd(II) was completely removed by leaching the dried and powdered materials particles with 0.5 M HCl. The obtained IIPs particles exhibited excellent selectivity for target ion. The distribution ratio (D) values of Cd(II)-IIPs for Cd(II) were greatly larger than that for Cu(II), Zn(II) and Hg(II). The relative selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II) were 25.5, 35.3 and 62.1. The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cd(II) was 32.56 and 6.30 mg g−1, respectively. Moreover, the times of adsorption equilibration and complete desorption were remarkably short. The prepared Cd(II)-IIPs were shown to be promising for solid-phase extraction coupled with inductively coupled plasma atomic emission spectrometry (ICP-AES) for the determination of trace Cd(II) in real samples. The precision (R.S.D.) and detection limit (3σ) of the method were 2.4% and 0.14 μg L−1, respectively. The column packed with Cd(II)-IIPs was good enough for Cd(II) separation in matrixes containing components with similar chemical behaviour such as Cu(II), Zn(II) and Hg(II).  相似文献   

2.
2-(Methylthio)aniline-modified Amberlite XAD-2 has been synthesized by coupling it through a NNNH group. The resulting chelating resin, characterized by elemental analysis, thermogravimetric analysis and infrared spectra, was used to preconcentrate Cd, Hg, Ni, Co, Cu and Zn ions. Several parameters, such as the distribution coefficient and sorption capacity of the chelating resin, pH and flow rates of uptake and stripping, and volume of sample and eluent, were evaluated. The effect of electrolytes and cations on the preconcentration was also investigated. The recoveries were >96%. The procedure was validated by standard addition and analysis of a standard river sediment material (GBW 08301, China). The developed method was utilized for preconcentration and determination of Cd, Hg, Ni, Co, Cu and Zn in tap water and river water samples by flame atomic absorption spectrometry with satisfactory results. The 3σ detection limit and 10σ quantification limit for Cd, Hg, Ni, Co, Cu and Zn were found to be 0.022, 0.028, 0.033, 0.045, 0.041, 0.064 μg l−1 and 0.041, 0.043, 0.052, 0.064, 0.058, 0.083 μg l−1, respectively.  相似文献   

3.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

4.
A new cadmium(II)-imprinted polymer based on cadmium(II) 2,2′-{ethane-1,2-diylbis[nitrilo(E)methylylidene]} diphenolate-4-vinylpyridine complex was obtained via suspension polymerization. The beads were used as a minicolumn packing for flow-injection-flame atomic absorption spectrometry (FI-FAAS) determination of cadmium(II) in water samples. Sorption effectiveness was optimal within pH range of 6.6-7.7. Nitric acid, 0.5% (v/v) was used as eluent. Fast cadmium(II) sorption by the proposed material enabled to apply sample flow rates up to 10 mL min−1 without loss in sorption effectiveness. Enrichment factor (EF), concentration efficiency (CE) and limit of detection (LOD, 3σ) found for 120-s sorption time were 117, 39.1 min−1 and 0.11 μg L−1, respectively. Sorbent stability was proved for at least 100 preconcentration cycles (RSD = 2.9%). When compared to non-imprinted polymer the new Cd(II)-imprinted polymer exhibited improved selectivity towards cadmium(II) against other heavy metal ions, especially Cu(II) and Pb(II), as well as light metal ions. Accuracy of the method was tested for ground water and waste water certified reference materials and fortified water. The method was applied to Cd(II) determination in natural water samples.  相似文献   

5.
Gopalan Venkatesh 《Talanta》2007,71(1):282-287
Amberlite XAD-16 was loaded with 4-{[(2-hydroxyphenyl)imino]methyl}-1,2-benzenediol (HIMB) via azo linker and the resulting resin AXAD-16-HIMB explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II) in the pH range 5.0-8.0. The sorption capacity was found between 56 and 415 μmol g−1 and the preconcentration factors from 150 to 300. Tolerance limits for foreign species are reported. The kinetics of sorption is not slow, as t1/2 is ≤15 min. The chelating resin can be reused for seventy cycles of sorption-desorption without any significant change (<2.0%) in the sorption capacity. The limit of detection values (blank + 3 s) are 1.72, 1.30, 2.56, 2.10, 0.44, 2.93, 2.45 and 3.23 μg l−1 for Zn, Mn, Ni, Pb, Cd, Cu, Fe and Co, respectively. The enrichment on AXAD-16-HIMB coupled with flame atomic absorption spectrometry (FAAS) monitoring is used to determine the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in powdered milk samples.  相似文献   

6.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

7.
This study describes the functionalization of biopolymer chitosan, using the complexing agent 8-hydroxyquinoline (oxine) by reaction of diazotization. The chelating resin was characterized by degree of deacetylation, infrared, Raman spectroscopy. The efficiency of the chelating resin and accuracy of the proposed method was evaluated by the metal ion recovery technique in the analysis of potable water, lake water, seawater and a certified sample of oyster tissue. The metal ions Cd(II) and Cu(II) in the samples were previously enriched in a minicolumn and flow injection flame atomic absorption spectrometry (FI-FAAS) determined the concentrations of the analytes. The chelating resin exhibited high selectivity for Cd(II) at pH 7 and for Cu(II) at pH 10. The eluent concentration was tested by the use of HNO3 in concentrations of 0.1-3 mol l−1 maximum response was obtained at 0.5 mol l−1 for Cd(II) and Cu(II), with R.S.D. values of 0.4%. The analytes gave relative standard deviations (R.S.D.) of 1.5 and 0.7% for solutions of Cd(II) and Cu(II), respectively (n = 7) containing 20 μg l−1 of the metal ions, defining a high reproducibility. The limits of detection (LOD) were 0.1 μg l−1 for Cd(II) and 0.4 μg l−1 for Cu(II). The analytical properties of merit were obtained using the parameters previously optimized with preconcentration time of 90 s. The chelating resin showed chemical stability within a wide range of pH and the efficiency was not altered for the preconcentration of the metal ions during all the experiments.  相似文献   

8.
We report for the first time the synthesis of bismuth-modified (3-mercaptopropyl) trimethoxysilane (MPTMS) and its application for the determination of lead and cadmium by anodic stripping voltammetry. Xerogels made from bismuth-modified MPTMS and mixtures of it with tetraethoxysilane, under basic conditions (NH3·H2O), were characterized with scanning electron microscopy, energy dispersive spectroscopy, infrared spectroscopy and electrochemical methods. Bismuth-modified xerogels were mixed with 1.5% (v/v) Nafion in ethanol and applied on glassy carbon electrodes. During the electrolytic reductive deposition step, the bismuth compound on the electrode surface was reduced to metallic bismuth. The target metal cations were simultaneously reduced to the respective metals and were preconcentrated on the electrode surface by forming an alloy with bismuth. Then, an anodic voltammetric scan was applied in which the metals were oxidized and stripped back into the solution; the voltammogram was recorded and the stripping peak heights were related to the concentration of Cd(II) and Pb(II) ions in the sample. Various key parameters were investigated in detail and optimized. The effect of potential interferences was also examined. Under optimum conditions and for preconcentration period of 4 min, the 3σ limit of detection was 1.3 μg L−1 for Pb(II) and 0.37 μg L−1 for Cd(II), while the reproducibility of the method was 4.2% for lead (n = 5, 10.36 μg L−1 Pb(II)) and 3.9% for cadmium (n = 5, 5.62 μg L−1 Cd(II)). Finally, the sensors were applied to the determination of Cd(II) and Pb(II) ions in water samples.  相似文献   

9.
In this paper, an automatic method for the screening of water samples containing Cu(II) was proposed, based on peryoxalate chemiluminescence reaction using coproporphyrin I as fluorophor compound to provide selectivity and a simple flow injection (FI) chemiluminescence detector (CLD). FI system conditions were chosen in order to distinguish samples over or under legislation limit established (50 μg l−1) with high reliability. The detection limit found was 9 μg l−1 and the linear dynamic range was 15-125 μg l−1 of Cu(II). Repeatibility and reproducibility studies gave good precision and accuracy with recovery near 100%. Under these conditions, the method resulted selective and only Fe(II), Fe(III) and Pb(II) could interfere, but at a concentration level higher than their normal concentration in waters. The proposed method was found to be highly reliable for screening purposes and it was successfully applied to the screening of a variety of real water samples.  相似文献   

10.
Jiang N  Chang X  Zheng H  He Q  Hu Z 《Analytica chimica acta》2006,577(2):225-231
A new Ni(II)-imprinted amino-functionalized silica gel sorbent with excellent selectivity for nickel(II) was prepared by an easy one-step reaction by combining a surface imprinting technique for selective solid-phase extraction (SPE) of trace Ni(II) in water samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Ni(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Ni(II) was 12.61 and 4.25 mg g−1, respectively. The relatively selective factor (αr) values of Ni(II)/Cu(II), Ni(II)/Co(II), Ni(II)/Zn(II) and Ni(II)/Pd(II) were 45.99, 32.83, 43.79 and 28.36, which were greater than 1. The distribution ratio (D) values of Ni(II)-imprinted polymers for Ni(II) were greatly larger than that for Cu(II), Co(II), Zn(II) and Pd(II). The detection limit (3σ) was 0.16 ng mL−1. The relative standard deviation of the method was 1.48% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08618 and GBW 08402), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace nickel in plants and water samples with satisfactory results.  相似文献   

11.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

12.
This work reports the determination of trace Co(II) by adsorptive stripping voltammetry on disposable three-electrode cells with on-chip metal-film electrodes. The heart of the sensors was a bismuth-film electrode (BiFE) with Ag and Pt planar strips serving as the reference and counter electrodes, respectively. Metals were deposited on a silicon chip by sputtering while the areas of the electrodes were patterned via a metal mask. Co(II) was determined by square wave adsorptive stripping voltammetry (SWAdSV) after complexation with dimethylglyoxime (DMG). The experimental variables (the DMG concentration, the preconcentration potential, the accumulation time and the SW parameters), as well as potential interferences, were investigated. Using the selected conditions, the 3σ limit of detection was 0.09 μg l−1 of Co(II) (for 90 s of preconcentration) and the relative standard deviation for Co(II) was 3.8% at the 2 μg l−1 level (n = 8). The method was applied to the determination of Co(II) in a certified river water sample. These mercury-free electrochemical devices present increased scope for field analysis and μ-TAS applications.  相似文献   

13.
A selective novel reverse flow injection system with chemiluminescence detection (rFI-CL) for the determination of Cr(VI) in presence of Cr(III) with Dichlorotris (1,10-phenanthroline)ruthenium(II), (Ru(phen)3Cl2), is described in this work. This new method is based on the oxidation capacity of Cr(VI) in H2SO4 media. First, the Ruthenium(II) complex is oxidized to Ruthenium(III) complex by Cr(VI) and afterwards it is reduced to the excited state of the Ruthenium(II) complex by a sodium oxalate solution, emitting light inside the detector. The intensity of chemiluminescence (CL) is proportional to the concentration of Cr(VI) and, under optimum conditions, it can be determined over the range of 3-300 μg L−1 with a detection limit of 0.9 μg L−1. The RSD was 8.4% and 1.5% at 5 and 50 μg L−1, respectively. For the rFI-CL method various analytical parameters were optimized: flow rate (1 mL min−1), H2SO4 carrier concentration (20% w/V), Ru(phen)3Cl2 concentration (5 mM) and sodium oxalate concentration (0.1 M). The effect of Cr(III), Fe(III), Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Ca(II) and Mg(II), was studied. The method is highly sensitive and selective, allowing a fast, on-line determination of Cr(VI) in the presence of Cr(III). Finally, the method was tested in four different water samples (tap, reservoir, well and mineral), with good recovery percentage.  相似文献   

14.
Venkatesh G  Singh AK 《Talanta》2005,67(1):187-194
2-{[1-(3,4-Dihydroxyphenyl)methylidene]amino}benzoic acid (DMABA) was loaded on Amberlite XAD-16 (AXAD-16) via azo linker and the resulting resin AXAD-16-DMABA explored for enrichment of Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II). The optimum pH values for extraction are 6.5-7.0, 5.0-6.0, 5.5-7.5, 5.0-6.5, 6.5-8.0, 5.5-7.0, 4.0-5.0 and 6.0-7.0, respectively. The sorption capacity was found between 97 and 515 μmol g−1 and the preconcentration factors from 100 to 450. Tolerance limits for foreign species are reported. The kinetics of sorption is fast as t1/2 is ≤5 min. The chelating resin can be reused for 50 cycles of sorption-desorption without any significant change (<1.5%) in the sorption capacity. The limit of detection values (blank +3 s) are 1.12, 1.38, 1.76, 0.67, 0.77, 2.52, 5.92 and 1.08 μg L−1 for Zn(II), Mn(II), Ni(II), Pb(II), Cd(II), Cu(II), Fe(III) and Co(II), respectively. The enrichment on AXAD-16-DMABA coupled with monitoring by flame atomic absorption spectrometry (FAAS) is used to determine all the metal ion ions in river and synthetic water samples, Co in vitamin tablets and Zn in milk samples.  相似文献   

15.
A new method that uses solid phase extraction (SPE) coupled with FTIR spectroscopy to detect Hg(II) in aqueous samples is described. The technique is envisioned for on-site, field evaluation rather than lab-based techniques. This paper presents the “proof of principle” of this new approach toward measurements of Hg(II) in water and identifies mass transport issues that would need to be overcome in order to migrate from a lab based method to field operation. The SPE material supported on a Si wafer is derivatized with an acylthiosemicarbazide, which undergoes a reaction in the presence of aqueous Hg(II) to form an oxadiazole ring. The progress of the reaction is monitored by IR spectroscopy. Following EPA guidelines, the method of detection limit (MDL) for the SPE/IR was 5 μg of Hg(II) cm−2. In a 1 L sample and a 1 cm2 Si wafer, this translates to a detection limit of 5 ppb. This system shows a high selectivity toward aqueous Hg(II) over other thiophilic heavy metal ions such as Pb(II), Cd(II), Fe(III), and Zn(II) and other metal ions such as Ni(II), Mn(II), Co(II), Cu(II), In(III), Ru(III), Na(I), and Ag(I) in aqueous solutions.  相似文献   

16.
5,11,17,23-Tetrakis(1,1-dimethylethyl)-25,26-dihydroxy-27,28-crown-4-calix[4]arene in the cone conformation was synthesized. This p-tert-butylcalix[4]arene-1,2-crown-4 compound was then anchored with Merrifield chloromethylated resin beads. The modified polymeric resin was characterized by 1H NMR, FT-IR and elemental analysis and used successfully for the separation and preconcentration of Cu(II), Cd(II), Co(II), Ni(II) and Zn(II) prior to their determination by FAAS. Effective extraction conditions were optimized in both batch and column methods. The resin exhibits good separating ability with maximum between pH 6.0-7.0 for Cu(II), pH 6.0 for Cd(II), pH 5.0 for Co(II), pH 4.0-4.5 for Ni(II), and pH 4.5 for Zn(II). The elution studies were carried out with 0.5 mol L−1 HCl for Cu(II), Co(II) and Co(II), 1.0 mol L−1 HCl for Cd(II) and Zn(II). The sorption capacity, preconcentration factor and distribution coefficient of each metal ion were determined. The detection limits were 1.10, 1.25, 1.83, 1.68 and 2.01 μg L−1 for Cu(II), Cd(II), Co(II), Ni(II) and Zn(II). The influence of several ions on the resin performance was also investigated. The validity of the proposed method was checked for these metal ions in NIST standard reference material 2709 (San Joaquin Soil) and 2711 (Montana Soil).  相似文献   

17.
A chelate resin immobilizing carboxymethylated pentaethylenehexamine (CM-PEHA resin) was prepared, and the potential for the separation and preconcentration of trace elements in water samples was evaluated through the adsorption/elution test for 62 elements. The CM-PEHA resin could quantitatively recover various elements, including Ag, Cd, Co, Cu, Fe, Ni, Pb, Ti, U, and Zn, and rare earth elements over a wide pH range, and also Mn at pH above 5 and V and Mo at pH below 7. This resin could also effectively remove major elements, such as alkali and alkaline earth elements, under acidic and neutral conditions. Solid phase extraction using the CM-PEHA resin was applicable to the determination of 10 trace elements, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn, in certified reference materials (EnviroMAT EU-L-1 wastewater and ES-L-1 ground water) and treated wastewater and all elements except for Mn in surface seawater using inductively coupled plasma atomic emission spectrometry. The detection limits, defined as 3 times the standard deviation for the procedural blank using 500 mL of purified water (50-fold preconcentration, n = 8), ranged from 0.003 μg L−1 (Mn) to 0.28 μg L−1 (Zn) as the concentration in 500 mL of solution.  相似文献   

18.
The operational characteristics of a novel poly(tetrafluoroethylene) (PTFE) bead material, granular Algoflon®, used for separation and preconcentration of metal ions via adsorption of on-line generated non-charged metal complexes, were evaluated in a sequential injection (SI) system furnished with an external packed column and in a sequential injection lab-on-valve (SI-LOV) system. Employed for the determination of cadmium(II), complexed with diethyldithiophosphate (DDPA), and detection by electrothermal atomic absorption spectrometry (ETAAS), its performance was compared to that of a previously used material, Aldrich PTFE, which had demonstrated that PTFE was the most promising for solid-state pretreatments. By comparing the two materials, the Algoflon® beads exhibited much higher sensitivity (1.6107 μg l−1 versus 0.2956 μg l−1 per integrated absorbance (s)), and better retention efficiency (82% versus 74%) and enrichment factor (20.8 versus 17.2), although a slightly smaller linear dynamic range (0.05-0.25 μg l−1 versus 0.05-1.00 μg l−1). Moreover, no flow resistance was encountered under the experimental conditions used. The results obtained on three standard reference materials were in good agreement with the certified values.  相似文献   

19.
The present study describes the adsorption characteristic of Cd(II) onto Nb2O5/Al2O3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area (SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g−1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO2/Al2O3/Nb2O5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L−1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 24 full factorial design and Doehlert matrix. The effect of SO42−, Cu2+, Zn2+ and Ni2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h−1, concentration efficiency of 4.35 min−1, linear range from 5.0 up to 35.0 μg L−1 and limits of detection and quantification of 0.19 and 0.65 μg L−1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).  相似文献   

20.
Zn(II) ion-imprinted polymer materials used for solid-phase extraction (SPE) column were prepared by the copolymerization of 8-acryloyloxyquinoline (8-AOQ) monomer and a crosslinker ethylene glycol dimethacrylate (EGDMA) in the presence of 2,2′-azobisisobutyronitrile (AIBN) as an initiator. After removing Zn(II) ion from the polymer, molecularly imprinted polymers (MIPs) capable of selectively rebinding Zn(II) ion were obtained. The maximum adsorption capacity of Zn(II) on MIPs beads was about 3.9 mg g−1. The effect of pH and flow rate for quantitative enrichment was also investigated. The Zn(II)-imprinted microbeads have a greater affinity for Zn(II) with respect to Cu(II), Co(II) and Ni(II) ions. A detection limit of 0.65 μg L−1(3σ) and a relative standard deviation (R.S.D., n = 7) of 2.9% were obtained. The MIPs-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.65 to 130 μg L−1. Zn(II) ion-imprinted beads enabled the selective extraction of zinc ions from a complex matrix, and after 20 times of adsorption and desorption cycle, the recovery of adsorption capacity of Zn(II) on MIPs beads was only decreased 3.2%. The results suggested that these MIPs can be used several times without considerable loss of adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号