首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A fast and reliable method for the determination of trace PAHs (polynuclear aromatic hydrocarbons) in seawater by solid-phase microextraction (SPME) followed by gas chromatographic (GC) analysis has been developed. The SPME operational parameters have been optimized, and the effects of salinity and dissolved organic matter (DOM) on PAHs recoveries have been investigated. SPME measures only the portion of PAHs which are water soluble, and can be used to quantify PAH partition coefficient between water and DOM phases. The detection limits of the overall method for the measurement of sixteen PAHs range from 0.1 to 3.5 ng/g, and the precisions of individual PAH measurements range from 4% to 23% RSD. The average recovery for PAHs is 88.2±20.4%. The method has been applied to the determination of PAHs in seawater and sediment porewater samples collected in Jiaozhou Bay and Laizhou Bay in Shandong Peninsula, China. The overall levels of PAHs in these samples reflect moderate pollution compared to seawater samples reported elsewhere. The PAH distribution pattern shows that the soluble PAHs in seawater and porewater samples are dominated by naphthalenes and 3 ring PAHs. This is in direct contrast to those of the sediment samples reported earlier, in which both light and heavy PAHs are present at comparable concentrations. The absence of heavy PAHs in soluble forms (<0.1-3.5 ng/L) is indicative of the strong binding of these PAHs to the dissolved or solid matters and their low seawater solubility.  相似文献   

2.
Solid-phase microextraction (SPME) has been successfully used for extracting polycyclic aromatic hydrocarbons (PAHs) from porewater samples from the Mersey Estuary, UK. The majority of the PAHs in porewater samples are associated with colloids due to the high DOC concentrations. The truly dissolved PAH concentrations varied from 66 to 1050?ng?L?1 in core 2 and from 95 to 740?ng?L?1 in core 3, and were dominated by naphthalene, fluoranthene, and pyrene. Although absent in the dissolved phase, the high-molecular-mass compounds were found in the colloid-associated fraction of porewater. PAHs in sediments arose from a range of compounds with 4- and 5-ring PAHs dominating. The partitioning of PAHs between sediment and porewater shows that PAHs are enriched in the sediment phase. When the soot carbon content was considered, predictions of the partition behaviour were found to agree more closely with the observed distribution. The results reiterate the importance of evaluating the speciation of organic pollutants in both porewater and sediments in order to accurately predict their environmental fate and potential toxicity.  相似文献   

3.
A solid-phase microextraction (SPME) and gas chromatography-mass spectrometry method for determining polycyclic aromatic hydrocarbons (PAHs) in environmental solid matrices is developed. Investigated matrices include seaweed (Undaria pinnatifida and Himanthalia elongata), humic substances (isolated from a wetland out-flow and purchased from Aldrich), and soil. Optimal conditions for a good SPME efficiency of 16 hydrocarbon compounds are obtained using a 100- micro m polydimethylsiloxane fiber directly immersed in aqueous carrier medium. The method is remarkable for presenting short extraction times and considerably high sensitivities. The SPME results obtained by using internal calibration give the total analyte concentration based on the identical partitioning behavior of native and spiked pollutants. The detection limits range from 0.001 to 0.1 mg of PAH per kilogram of dry matrix. SPME external calibration provides information regarding freely dissolved analytes. The detection limits range from 0.001 to 0.05 micro g of PAH per liter of carrier medium. The SPME with external calibration procedure can be applied to measure free concentrations of a target compound spiked into a carrier medium and onto a matrix. Based on a comparison of results obtained for the two samples, the partitioning of the target analyte between the matrix and the carrier medium is calculated.  相似文献   

4.
The effect of humic acid on solid-phase extraction of polycyclic aromatic hydrocarbons (PAHs) from surface water was studied. The hydrophobic PAHs show significant association with humic acid, and this was confirmed to be the cause of negative effect when conventional reversed-phase solid-phase extraction (RP-SPE) was employed to extract the analytes from aqueous samples. As an alternative, dynamic ion-exchange (DIE) SPE could simultaneously extract both the fraction of the analytes which was associated with humic acid, and that which was freely dissolved. Using the 16 US Environmental Protection Agency priority PAHs as model compounds, the recoveries of the highly hydrophobic components by DIE-SPE were 10-30% higher than those by RP-SPE for a 1000-ml water sample dissolved with Aldrich humic acid (of 4.1 mg/l dissolved organic carbon content). A similar result was also obtained for 500 ml of natural surface water although the difference in recoveries between the two methods for this sample was smaller than that for the simulated sample. For validation of the method, the artifacts in connection with DIE-SPE in extracting the fraction of analytes which was freely dissolved and that which was associated with humic acid were investigated.  相似文献   

5.
A simple and sensitive automated method, consisting of in-tube solid-phase microextraction (SPME) coupled with high-performance liquid chromatography-fluorescence detection (HPLC-FLD), was developed for the determination of 15 polycyclic aromatic hydrocarbons (PAHs) in food samples. PAHs were separated within 15 min by HPLC using a Zorbax Eclipse PAH column with a water/acetonitrile gradient elution program as the mobile phase. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL of sample using a CP-Sil 19CB capillary column as an extraction device. Low- and high-molecular weight PAHs were extracted effectively onto the capillary coating from 5% and 30% methanol solutions, respectively. The extracted PAHs were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME HPLC-FLD method, good linearity of the calibration curve (r > 0.9972) was obtained in the concentration range of 0.05–2.0 ng/mL, and the detection limits (S/N = 3) of PAHs were 0.32–4.63 pg/mL. The in-tube SPME method showed 18–47 fold higher sensitivity than the direct injection method. The intra-day and inter-day precision (relative standard deviations) for a 1 ng/mL PAH mixture were below 5.1% and 7.6% (n = 5), respectively. This method was applied successfully to the analysis of tea products and dried food samples without interference peaks, and the recoveries of PAHs spiked into the tea samples were >70%. Low-molecular weight PAHs such as naphthalene and pyrene were detected in many foods, and carcinogenic benzo[a]pyrene, at relatively high concentrations, was also detected in some black tea samples. This method was also utilized to assess the release of PAHs from tea leaves into the liquor.  相似文献   

6.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

7.
Metal-organic frameworks (MOFs) have received great attention as novel sorbents due to their fascinating structures and intriguing potential applications in various fields. In this work, a MIL-101(Cr)-coated solid-phase microextraction (SPME) fiber was fabricated by a simple direct coating method and applied to the determination of volatile compounds (BTEX, benzene, toluene, ethylbenzene, m-xylene and o-xylene) and semi-volatile compounds (PAHs, polycyclic aromatic hydrocarbons) from water samples. The extraction and desorption conditions of headspace SPME (HS-SPME) were optimized. Under the optimized conditions, the established methods exhibited excellent extraction performance. Good precision (<7.7%) and low detection limits (0.32–1.7 ng L−1 and 0.12–2.1 ng L−1 for BTEX and PAHs, respectively) were achieved. In addition, the MIL-101(Cr)-coated fiber possessed good thermal stability, and the fiber can be reused over 150 times. The fiber was successfully applied to the analysis of BTEX and PAHs in river water by coupling with gas chromatography–mass spectrometry (GC–MS). The analytes at low concentrations (1.7 and 10 ng L−1) were detected, and the recoveries obtained with the spiked river water samples were in the range of 80.0–113% and 84.8–106% for BTEX and PAHs, respectively, which demonstrated the applicability of the self-made fiber.  相似文献   

8.
Matrix interference removal is an important step when large volumes of aqueous samples are required to be processed to detect trace levels of analytes. A combination of two sample extraction methods has been used in this work with the aim of cleanup and preconcentration of analytes. For first objective, mild but preferential sorption of a range of analytes has been performed with in-tube solid-phase microextraction (SPME) using polytetrafluoroethylene (PTFE) tubing, and for the second, the eluate from in-tube SPME was subjected to on-fibre SPME using DVB/Caboxen/PDMS (30/50 μm) fibre. Knitting of PTFE tubing created secondary flow pattern that enhanced radial diffusion and retention of organic analytes. Up to 2 mg L−1 of a broad range of substances that are not extracted by PTFE include nitrogen containing aromatic heterocyclic compounds, anilines, phenols and certain organophosphorus pesticides, thus providing a clean extract using this method of sample preparation. The proposed combination of in-tube and on-fibre SPME produced a rectilinear calibration graph over 0.03-150 μg L−1 of a range of analytes using 60 mL of aqueous sample. The overall recovery of analytes was in the range 27-78%. The detection limits were between 6.1 and 21.8 ng L−1. The R.S.D. was in range 5.4-8.2% and 4.2-6.5% in the analysis of respectively 2 and 20 μg L−1 of analytes.  相似文献   

9.
A method for the determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments using microwave-assisted extraction with a micellar medium combined with solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) has been developed. Two kinds of SPME fibers (100 μm polydimethylsiloxane and 85 μm polyacrylate) and different micellar media were compared for the extraction efficiency of the 16 EPA priority PAHs. The polyacrylate fiber with a micellar medium of polyoxyethylene-10-laurylether provides the highest extraction efficiency. The method is remarkable for presenting lower equilibrium times and considerably higher reproducibilities than the obtained in aqueous medium. The LODs obtained ranged between 0.28 ng/ml for fluorene and 7.66 ng/ml for indeno[1,2,3-cd]pyrene. The method has been applied to the determination of PAHs in a certified marine sediment (SRM 1941a), obtaining recoveries between 58.6 and 111.5% for three- to five-ring PAHs with precision close to or lower than the certified values.  相似文献   

10.
Solid phase microextraction (SPME), a simple, fast and promising sampling technique, has been widely used for complex sample analysis. However, complex matrices could modify the absorption property of coatings as well as the uptake kinetics of analytes, eventually biasing the quantification results. In the current study, we demonstrated the feasibility of a developed calibration method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in complex milk samples. Effects of the complex matrices on the SPME sampling process and the sampling conditions were investigated. Results showed that short exposure time (pre-equilibrium SPME, PE-SPME) could increase the lifetime of coatings, and the complex matrices in milk samples could significantly influence the sampling kinetics of SPME. In addition, the optimized sampling time, temperature and dilution factor for PAHs were 10 min, 85 °C and 20, respectively. The obtained LODs and LOQs of all the PAHs were 0.1–0.8 ng/mL and 1.4–4.7 ng/mL, respectively. Furthermore, the accuracy of the proposed PE-SPME method for milk sampling was validated by the recoveries of the studied compounds in two concentration levels, which ranged from 75% to 110% for all the compounds. Finally, the proposed method was applied to the screening of PAHs in milk samples.  相似文献   

11.
An accurate and reliable method for determining polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosols is described. This optimised gas chromatography-mass spectrometry (GC-MS) method permits a wide range of concentrations to be analysed without the influence of interferences.Pre-treatment comparison of four kinds of aerosol collector filters determined that quartz and glass fibre filters were the most suitable. Solvents like cyclohexane, toluene, acetonitrile and dichloromethane were evaluated for their PAH-extraction capacity. Ultrasonic extraction using CH2Cl2 was selected because it is rapid and easy; moreover, this solvent increases the sample-throughput capacity.PAH compounds were quantitatively collected and ultrasonically extracted twice using 15 mL of CH2Cl2 for 15 min for each replicate. Rotavapor concentration, fractionation and dissolution were also optimised.A certified standard mixture (16 EPA PAHs), a deuterated compound and precision recovery assays were used for validating the proposed methodology. Adequate analytical parameters were obtained. Detection limits were (1.6-26.3) × 10−5 ng and quantification limits were (5.2-87.6) × 10−5 ng.Analysis of the environmental samples detected 4-10 EPA list PAH compounds. In addition, 2-11 tentative compounds were found, and their molecular structures were described for the first time.Our study of both Youden method and the standard addition method has shown that the proposed determination of PAHs in environmental samples is free of systematic errors.In conclusion, this unbiased methodology improves the identification and quantification of PAH compounds. High sensitivity as well as acceptable detection and quantification limits were obtained for the environmental applications.  相似文献   

12.
A pressurized liquid extraction (PLE) method has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil samples and it was compared with ultrasonic extraction. The extraction step was followed by gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS/MS) analysis. Parameters such as type of solvent, extraction time, extraction temperature and number of extractions were optimized. There were no significant differences among the two extraction methods although better extraction efficiencies were obtained when PLE was used, minimizing extraction time and solvent consumption. PLE procedure was validated, obtaining limits of detection (LODs) ranging from 0.02 to 0.75 μg kg−1 and limits of quantification (LOQs) ranging from 0.07 to 2.50 μg kg−1 for the selected PAHs. Recoveries were in the range of 59-110%, except for naphthalene, which was the most volatile PAH. Finally, the method was applied to real soil samples from Southeast of Spain. PAHs concentrations were low, and phenanthrene, pyrene, fluorene, benzo[a]pyrene and chrysene were the most frequently detected analytes in the samples.  相似文献   

13.
The effect of dissolved humic acids on the recovery of PAHs from water samples has been investigated using a commercially available humic acid preparation as colloid model and a mixture containing the 16 EPA PAHs. The presence of humic acid reduced the extraction efficiency down to between 10 and 75%. An analytical protocol was therefore developed for the accurate determination of PAHs in the presence of humic acids based on isotope dilution mass spectrometry. The procedure compensates for losses due to sorption of PAHs and can be used for the determination of the total PAH concentration in water, i.e. dissolved PAHs plus PAHs adsorbed on colloids. To obtain reliable estimates it is essential to allow a certain time for equilibration between the isotope spike and the aqueous matrix which may vary between 5 and 24 h, in correlation with the water solubility of PAHs. The protocol allows one to recover the 16 PAHs studied at 94 to 105%. The expanded uncertainty of the measurements was 5–7% for all PAHs. Liquid–liquid extraction and solid-phase extraction in combination with the developed isotope dilution protocol performed equally well for the quantification of PAHs from water samples rich in colloidal material.   相似文献   

14.
Zhao W  Ouyang G  Pawliszyn J 《The Analyst》2007,132(3):256-261
The in-fibre standardization method is a novel approach that has been developed for field sampling/sample preparation, in which an internal standard is pre-loaded onto a solid-phase microextraction (SPME) fibre for calibration of the extraction of target analytes in field samples. The same method can also be used for in-vial sample analysis. In this study, different techniques to load the standard to a non-porous SPME fibre were investigated. It was found that the appropriateness of the technique depends on the physical properties of the standards that are used for the analysis. Headspace extraction of the standard dissolved in pumping oil works well for volatile compounds. Conversely, headspace extraction of the pure standard is an effective approach for semi-volatile compounds. For compounds with low volatility, a syringe-fibre transfer method and direct extraction of the standard dissolved in a solvent exhibited a good reproducibility (<5% RSD). The main advantage of the approaches investigated in this study is that the standard generation vials can be reused for hundreds of analyses without exhibiting significant loss. Moreover, most of the standard loading processes studied can be performed automatically, which is efficient and precise. Finally, the standard loading technique and in-fibre standardization method were applied to a complex matrix (milk) and the results illustrated that the matrix effect can be effectively compensated for with this approach.  相似文献   

15.
A headspace solid-phase dynamic extraction (HS-SPDE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized inside the surface of a needle, as a possible alternative to solid-phase microextraction (SPME). Thermal desorption was subsequently, employed to transfer the extracted analytes into the injection port of a gas chromatography-mass spectrometry (GC-MS). The PPy sorbent including polypyrrole-dodecyl sulfate (PPy-DS) was deposited on the interior surface of a stainless steel needle from the corresponding aqueous electrolyte by applying a constant deposition potential. The homogeneity and the porous surface structure of the coating were examined using the scanning electron microscopy (SEM).The developed method was applied to the trace level extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample. In order to enhance the extraction efficiency and increase the partition coefficient of analytes, the stainless steel needle was cooled at 5 °C, while the sample solution was kept at 80 °C. Optimization of influential experimental conditions including the voltage of power supply, the time of PPy electrodeposition, the extraction temperature, the ionic strength and the extraction time were also investigated. The detection limits of the method under optimized conditions were in the range of 0.002-0.01 ng mL−1. The relative standard deviations (R.S.D.) at a concentration level of 0.1 ng mL−1 were obtained between 7.54 and 11.4% (n = 6). The calibration curves of PAHs showed linearity in the range of 0.01-10 ng mL−1. The proposed method was successfully applied to the extraction of some selected PAHs from real-life water samples and the relative recoveries were higher than 90% for all the analytes.  相似文献   

16.
The European water framework directive (WFD) requires priority pollutants to be measured in the whole water sample and not only in the dissolved phase. However, it does not give clear definitions on how to achieve this. To overcome this limitation, a new methodology of sample preparation procedure for the analysis of polycyclic aromatic hydrocarbons on the basis of extraction disks is introduced here. The automatable procedure includes a “one-step” extraction of the analytes both dissolved in the liquid phase of the sample and sorbed to suspended particulate matter. The latter is extracted concurrently with the solid-phase extraction (SPE) material within the elution step of the procedure. Separation, identification, and quantification of the analytes is performed by GC–MS. Results from surface water samples spiked with certified sediment up to 1000 mg/l are presented in this work and compared with results derived from liquid–liquid extraction (LLE). Most measured values are within or at least near certified uncertainty limits of the sediment. The SPE disk method shows much higher recoveries and better precision (relative standard deviations between 2% and 11%) than the standard LLE method. For all substances under investigation, the limits of quantification achieved range between 0.001 and 0.005 μg/l.  相似文献   

17.
Ming-Chi Wei 《Talanta》2007,72(4):1269-1274
The novel pretreatment technique, microwave-assisted heating coupled to headspace solid-phase microextraction (MA-HS-SPME) has been studied for one-step in situ sample preparation for polycyclic aromatic hydrocarbons (PAHs) in aqueous samples before gas chromatography/flame ionization detection (GC/FID). The PAHs evaporated into headspace with the water by microwave irradiation, and absorbed directly on a SPME fiber in the headspace. After being desorbed from the SPME fiber in the GC injection port, PAHs were analyzed by GC/FID. Parameters affecting extraction efficiency, such as SPME fiber coating, adsorption temperature, microwave power and irradiation time, and desorption conditions were investigated.Experimental results indicated that extraction of 20 mL aqueous sample containing PAHs at optional pH, by microwave irradiation with effective power 145 W for 30 min (the same as the extraction time), and collection with a 65 μm PDMS/DVB fiber at 20 °C circular cooling water to control sampling temperature, resulted in the best extraction efficiency. Optimum desorption of PAHs from the SPME fiber in the GC hot injection port was achieved at 290 °C for 5 min. The method was developed using spiked water sample such as field water with a range of 0.1-200 μg/L PAHs. Detection limits varied from 0.03 to 1.0 μg/L for different PAHs based on S/N = 3 and the relative standard deviations for repeatability were <13%. A real sample was collected from the scrubber water of an incineration system. PAHs of two to three rings were measured with concentrations varied from 0.35 to 7.53 μg/L. Recovery was more than 88% and R.S.D. was less than 17%. The proposed method is a simple, rapid, and organic solvent-free procedure for determination of PAHs in wastewater.  相似文献   

18.
In this study, a new solid-phase microextraction (SPME) method for simultaneous extraction of pharmaceutical compounds with acidic and basic characteristics (ibuprofen, fenoprofen, diclofenac, diazepam and loratadine) from residual water samples is proposed. In this procedure, the extraction is processed using two distinct sample pH values. The extraction is begun at pH 2.5 to promote the sorption of acidic pharmaceuticals and after 35 min the sample pH is changed to 7.0 by adding 0.4 mol L−1 disodium hydrogenphosphate, so that the basic compounds can be sorbed by the fiber (20 min). The pH change is performed without interruption of the extraction process. A comparison between the proposed method and the SPME method applied to each group of the target compounds was performed. Gas chromatography coupled to mass spectrometry was used for separation and detection of analytes. The extraction conditions for the three methods were optimized using full factorial experimental design, response surface through a Doehlert matrix and central composite design. Limits of detection (0.02-0.43 μg L−1) and correlation coefficients (0.9970-0.9998) were determined for the three methods. The proposed extraction procedure was applied to samples of sewage treatment plant effluent and untreated wastewater. Recovery and relative standard deviation values ranged from 67 to 116% and 4.6 to 14.5%, respectively, for all compounds studied. Modification of sample pH during the extraction procedure was shown to be an excellent option for all of the compounds and may be extended to the simultaneous extraction of other compounds with different acid-base characteristics.  相似文献   

19.
Solid-phase microextraction (SPME) coupled to ultrasonic extraction was evaluated for extracting trace amounts of two agrochemical fungicides, vinclozolin and dicloran, in soil samples. Extraction was performed following two experimental approaches prior to the submission of the aqueous extracts to SPME-GC analysis. In the first approach, extraction involved sample homogenization with a water solution containing 5% (v/v) acetone and centrifugation prior to fiber extraction. In the second approach, the extraction of the fungicides from the soil samples was conducted using acetone as organic solvent which was then diluted with water to give a 5% (v/v) content. The pesticides were isolated with fused silica fiber coating with 85 μm polyacrylate. Parameters that affect both the extraction of the fungicides by the soil samples and the trapping of the analytes by the fiber were investigated and their impact on the SPME-GC-MS was studied. The procedures with respect to repeatability and limits of detection were evaluated by soil spiked with both analytes. Repeatability was between 5.6 and 14.2% and the limits of detection were 2-13 ng g−1. The efficiency of acetone/SPME was generally better than that for water/SPME procedure showing good linearity (R2>0.99) with coefficient variations below 9%, recoveries higher than 91% and limits of detection between 2 and 3 ng g−1. Finally, the recoveries obtained with acetone/SPME procedure were compared with the conventional liquid-liquid extraction using real soil samples. The acetone/SPME method was shown to be an inexpensive, fast and simple preparation method for the determination of target analytes at low nanogram per gram levels in soils.  相似文献   

20.
This study describes the determination of polycyclic aromatic hydrocarbons (PAHs) in water using high-performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD). Because individual PAHs are generally present in water only at trace levels, a sensitive and accurate determination technique is essential. The separation and detection of five PAHs were run completely within 25 min by the HPLC/FLD system with an analytical C18 column, a fluorescence detection, and acetonitrile-water gradient elution. Calibration graphs were linear with very good correlation coefficients (r > 0.9998), and the detection limits were in the range of 2-6 ng/l for five PAHs. Solid phase microextraction (SPME) was performed for sample pretreatment prior to HPLC-FLD determination, and the governing parameters were investigated. Compared to conventional methods, SPME has high recovery, saves considerable time, and reduces solvents waste. The extraction efficiencies of five PAHs were above 88% and the extraction times were 35 min in one pretreatment procedure. One particular discovery is that 1.5 M sodium monochloroactate (ClCH2COONa) can improve the extraction yield of PAH compounds more than other inorganic salts. The SPME-HPLC-FLD technique provides a relatively simple, convenient, practical procedure, which was here successfully applied to determine five PAHs in water from authentic water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号