首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A bent-shaped bipyridine ligand containing a dendritic aliphatic side chain has been synthesized as a ligand and complexed with silver ion through a self-assembling process. The resulting complexes were observed to self-assemble into supramolecular structures that differ significantly as a function of the counteranion size in the solid state, as confirmed by 1-D and 2-D X-ray diffraction experiments. The secondary structure of a cationic coordination chain appears to be dependent on the size of the counteranion. As the size of anion increases, the secondary structure of the coordination chain changes, from a helical chain, via a dimeric cycle, to a zigzag chain in the solid state. Interestingly, dilute solutions of the complexes exhibiting a columnar structure in polar solvents undergo spontaneous gelation and the resulting gels display a significant Cotton effect in the chromophore of the aromatic unit. These results represent a significant example that small variation in the anion size can provide a useful strategy to manipulate the secondary structure of linear chain and thereby solid-state supramolecular structure.  相似文献   

2.
A fluorophore labeled oligonucleotide could induce aggregation of a positively charged perylene probe. The perylene aggregate could very efficiently quench the fluorescence of the labeled fluorophore. Based on this observation, a new method for the highly sensitive and selective detection of a protein has been developed.  相似文献   

3.
Ko JW  Min KS  Suh MP 《Inorganic chemistry》2002,41(8):2151-2157
A 2-D metal-organic open framework having 1-D channels, [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).18H(2)O (1), was constructed by the self-assembly of the Cu(II) complex of hexaazamacrocycle A (A = C(10)H(26)N(6)) with sodium 1,3,5-benzenetricarboxylate (BTC(3)(-)) in DMSO-H(2)O solution. 1 crystallizes in the trigonal space group P with a = b = 17.705(1) A, c = 6.940(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 1884.0(3) A(3), Z = 1, and rho(calcd) = 1.428 g cm(-3). The X-ray crystal structure of 1 indicates that each Cu(II) macrocyclic unit binds two BTC(3-) ions in a trans position and each BTC(3-) ion coordinates three Cu(II) macrocyclic complexes to form 2-D coordination polymer layers with honeycomb cavities (effective size 8.1 A), and the layers are packed to generate 1-D channels perpendicularly to the 2-D layers. Solid 1 binds guest molecules such as MeOH, EtOH, and PhOH with different binding constant and capacity. By the treatment of 1 with aqueous solution of phenol, a hybrid solid [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).9PhOH.6H(2)O (2) was assembled. 2 crystallizes in the trigonal R3 space group with a = b = 20.461(1) A, c = 24.159(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 8759.2(7) A(3), Z = 3, and rho(calcd) = 1.280 g cm(-3). In 2, highly ordered 2-D noncovalent phenol layers are formed by the edge-to-face pi-pi interactions between the phenol molecules and are alternately packed with the coordination polymer layers in the crystal lattice.  相似文献   

4.
[reaction: see text] Mellitic triimides undergo three sequential one-electron reduction processes whose potentials are significantly lowered in the presence of alkyl thioureas. The two sequential reductions of benzene diimides are similarly stabilized. Calculation of the relative free energy change between the different electronic states of the imide acceptors and their corresponding alkyl thiourea complexes indicates dramatic increases in hydrogen bond strength with increasing acceptor charge density.  相似文献   

5.
We theoretically investigate the cooperative enhancement of the interactions between anions and electron-deficient aromatics by pi-pi stacking, focusing on the recent crystallographic observation of anion-pi-pi interactions in a synthesized coordination compound based on 1,3,5-triazine moieties. Using a combination of state-of-the-art dispersion-corrected density functional and quantum Monte Carlo calculations, we rationalize the unusual structural features observed in this nitrate-triazine-triazine complex. We show that the triazine rings are staggered and bent and slip with respect to each other with the nitrate bound off-center in a T-like configuration. Our results indicate that this pi-pi stacking is not simply enforced by the coordination of the triazines within the particular crystal structure but is regulated by cooperative anion-pi and pi-pi interactions. In the nitrate-triazine-triazine complex, this cooperative effect amounts to 6% of the total binding energy. Ways to further increase this energetic enhancement in the design of anion-host architectures are discussed.  相似文献   

6.
The structures of the self-assembled monolayers of various 4-alkoxybenzoic acids physisorbed at the liquid-solid interface were established by employing scanning tunnelling microscopy (STM). This study has been essentially undertaken to explore the competitive influence of van der Waals and hydrogen-bonding interactions on the process of two-dimensional self-assembly. These acid derivatives form hydrogen-bonded dimers as expected; however, the dimers organise themselves in the form of relatively complex lamellae. The characteristic feature of these lamellae is the presence of regular discommensurations or kinks along the lamella propagation direction. The formation of kinked lamellae is discussed in light of the registry mechanism of the alkyl chains with the underlying graphite substrate. The location of the kinks along a lamella depends on the number (odd or even) of carbon atoms in the alkyl chain. This result indicates that concerted van der Waals interactions of the alkyl chain units introduce the odd/even chain-length effect on the surface-assembled supramolecular patterns. The odd/even effects are retained even upon complexation with a hydrogen-bond acceptor. However, as the solvent is changed from 1-phenyloctane to 1-octanoic acid, the kinked lamellae as well as the odd/even effects disappear. This solvent-induced convergence of supramolecular patterns is attained by means of co-crystallisation of octanoic acid molecules in the 2D crystal lattice, which is evident from high-resolution STM images. The solvent co-adsorption phenomenon is discussed in terms of competing van der Waals and hydrogen-bonding interactions.  相似文献   

7.
8.
Five new pseudotetrahedral nickel(II) arylthiolate complexes Tp (R,Me)Ni-SR' [(Tp (R,Me)) (-) = 2,2,2-kappa (3)-hydridotris(3-R,5-methylpyrazolyl)borate; R = Me, R' = C 6H 5 (Ph), 2,4,6-C 6H 2(CH 3) 3 (Mes); R = Ph, R' = C 6H 5 (Ph), 2,4,6-C 6H 2(CH 3) 3 (Mes), and 2,6-C 6H 3(CH 3) 2 (Xyl)] were prepared by metathesis reactions of known chloride complexes with sodium arylthiolate salts in THF. The new products were fully characterized. The effect of increasing bulk of substituents at the proximal 3-pyrazolyl and ortho-thiolate positions represented in this series was evident in spectroscopic studies (UV-vis-NIR, (1)H NMR) of the product complexes. Increased steric contact induced red-shifting of nickel-thiolate ligand to metal charge transfer (LMCT) bands and enhanced contact shifts of arylthiolate protons with the paramagnetic ( S = 1) nickel(II) ion. These spectroscopic effects arise from structural distortion of the nickel(II)-thiolate bond revealed by X-ray crystal structure determinations of the structural extremes of the series, Tp (Me,Me)Ni-SPh and Tp (Ph,Me)Ni-SXyl. The distortion consists of a significantly increased tilting of the Ni-S bond from an ideal trigonal axis and increased linearity of the Ni-S-R angle that alters covalency of the Ni-S coordinate bond. Reactivity of the nickel-thiolate linkage toward electrophilic alkylation with MeI is also significantly affected, showing enhanced rates according to two distinct competing mechanisms, direct bimolecular alkylation of intact complex and rate-limiting unimolecular dissociation of free thiolate. Possible biochemical relevance of these observations to tetrahedral nickel(II) centers in metalloenzymes is considered.  相似文献   

9.
A recently proposed "DFT + dispersion" treatment (Rajchel et al., Phys. Rev. Lett., 2010, 104, 163001) is described in detail and illustrated by more examples. The formalism derives the dispersion-free density functional theory (DFT) interaction energy and combines it with the dispersion energy from separate DFT calculations. It consists of the self-consistent polarization of DFT monomers restrained by the exclusion principle via the Pauli blockade technique. Within the monomers a complete exchange-correlation potential should be used, but between them only the exact exchange operates. The application to a wide range of molecular complexes from rare-gas dimers to hydrogen-bonds to π-electron interactions shows good agreement with benchmark values.  相似文献   

10.
The first self-assembly of nanoscale metallodendrimers that have a hexagonal cavity as a core via the directional-bonding approach is reported. All metallodendrimers were characterized by multinuclear NMR (1H and 31P), mass spectrometry (ESI-MS and ESI-FT-ICR), and elemental analysis.  相似文献   

11.
The charge density distribution in taurine (2‐aminoethane‐sulfonic acid) is further studied with the molecular orbital occupation number refinement scheme. The recently proposed NCIPLOT scheme (Johnson et al., J. Am. Chem. Soc. 2010, 132, 6498) is applied to visualize the noncovalent interactions from experimentally refined charge densities. Herein, we demonstrate the evolution of the reduced density gradient isosurface during the charge density refinement process. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
We report on the oligosaccharide recognition through noncovalent interactions in water based on a unique supramolecular homoduplex-to-heteroduplex transformation of the oligoresorcinol nonamer as a fully artificial receptor. The oligoresorcinol forms a double helix in water, which unravels and entwines upon complexation with specific oligosaccharides with a particular chain length and glucosidic linkage pattern, thus generating the heteroduplex with an excess one-handed helical conformation that can be readily monitored and further quantified by absorption, circular dichroism, and NMR spectroscopies.  相似文献   

13.
Hydrothermal synthesis, characterization (IR, TG/DTA, element analysis, inductively coupled plasma (ICP)) and single-crystal X-ray structures of H4Btec hydrate and its two cobalt complexes, colorless [H4Btec · 2H2O] n (I), pink [Co(H2O)6(H2Btec)] n (II), and nacarat {[Co(H2O)3(H2Btec)(Phen)] · H2O} n (III) (H4Btec = 1,2,4,5-benzenetetracarboxylic acid, Phen = 1,10-phenanthroline) have been solved. The results showed that I forms a 3D O-H⋯O hydrogen-bonded network generated from H4Btec and water molecules, II presents a 3D network constructed by mononuclear [Co(H2O)6]2+ cations and H2Btec2− dianions through extensive hydrogen-bonding interactions, and III gives rise to a pseudo-octahedral coordination geometry. Extensive hydrogen-bonding interactions have significant effects in configuring a 3D network constructed by mononuclear [Co(H2Btec)(Phen)(H2O)3] neutral molecules and a water molecules. The article was submitted by the authors in English.  相似文献   

14.
One of the most familiar carbon-centered noncovalent interactions (NCIs) involving an antibonding π*-orbital situated at the Bürgi–Dunitz angle from the electron donor, mostly lone pairs of electrons, is known as n → π* interactions, and if it involves a σ* orbital in a linear fashion, then it is known as the carbon bond. These NCIs can be intra- or inter-molecular and are usually weak in strength but have a paramount effect on the structure and function of small-molecular crystals and proteins. Surprisingly, the experimental evidence of such interactions in the solution phase is scarce. It is even difficult to determine the interaction energy in the solution. Using NMR spectroscopy aided with molecular dynamics (MD) simulation and high-level quantum mechanical calculations, herein we provide the experimental evidence of intermolecular carbon-centered NCIs in solution. The challenge was to find appropriate heterodimers that could sustain room temperature thermal energy and collisions from the solvent molecules. However, after several trial model compounds, the pyridine-N-oxide:dimethyltetracyanocyclopropane (PNO–DMTCCP) complex was found to be a good candidate for the investigation. NBO analyses show that the PNO:DMTCCP complex is stabilized mainly by intermolecular n → π* interaction when a weaker carbon bond gives extra stability to the complex. From the NMR study, it is observed that the NCIs between DMTCCP and PNO are enthalpy driven with an enthalpy change of −28.12 kJ mol−1 and dimerization energy of ∼−38 kJ mol−1 is comparable to the binding energies of a conventional hydrogen-bonded dimer. This study opens up a new strategy to investigate weak intermolecular interactions such as n → π* interaction and carbon bonds in the solution phase.

NMR spectroscopy combined with MD simulation and electronic structure calculations enabled us to quantify the energetics of the intermolecular n → π* interaction and carbon-bonding (n → σ* interaction) in solution.  相似文献   

15.
Qiu H  Che S 《Chemical Society reviews》2011,40(3):1259-1268
Fabrication of chiral materials and revealing the mechanisms involved in their formation are crucial issues in scientific research. The combination of cooperative self-assembly routes and the chiral templating process favors the formation of inorganic chiral materials with highly ordered mesostructures. This tutorial review highlights the recent research on chiral mesoporous silica (CMS) of hierarchical helical constructions transcribed from organic templates. The rules and mechanisms involved in the synthesis of CMS and related materials, especially the novel expression of chirality and imprinting of helical micellar superstructure by the functional groups immobilized on the mesopore surface, provide us with a deeper insight into the chiral self-assembly process and new strategies for the design and application of chiral materials. This review is addressed to researchers and students interested in chiral chemistry, supramolecular chemistry and mesoporous materials (53 references).  相似文献   

16.
The recognition properties of a cooperative pinwheel chemosensor for dicarboxylates are described. The sensor possesses four guanidinium recognition elements to cooperatively bind two dicarboxylates of varying size. The effect of cooperativity and the read-out mechanism contributes to favorable binding constants for dicarboxylates in water, as well as a high degree of selectivity over monocarboxylates. Appropriate methods of reporting affinity for cooperative systems are discussed.  相似文献   

17.
The electronic effects resulting from noncovalent host-guest interactions between calix[6]arene and a ruthenium dimer, [Ru3O(OAc)6(CO)(ppy)]2-mu-pz (ppy=4-phenyl pyridine, pz=pyrazine), are presented. The noncovalent interaction is between the calix[6]arene and the ppy ligands of the dimer. The dimer can bind 2 equiv of calix[6]arene. The complex [Ru3O(OAc)6(CO)(ppy)]2-mu-pz forms a highly stable mixed valence ion with strong electronic coupling between the two Ru3 clusters. The strength of the electronic interaction is found to be moderated by calix[6]arene binding. Addition of calix[6]arene to the mixed valence ion causes the electronic coupling to decrease. The binding of calix[6]arene is found to be cooperative. The origins of cooperative binding are developed in terms of the potential energy surfaces associated with the symmetric and asymmetric mixed valence ion. In particular, it is found that symmetry breaking (through the binding of a single calix[6]arene) destabilizes the mixed valence state. Restoration of symmetry (through the binding of a second calix[6]arene) increases the stability of the mixed valence ion and provides an additional driving force for the binding of the second calix[6]arene.  相似文献   

18.
This paper reports the electroscopic and electrochemical properties of [2 + 2] pyromellitic diimide-based cyclophane 1 as well as acyclic N,N'-bis(2-methoxybenzyl)pyromellitic diimide 2 and the clathrate compounds formed by 1. Compound 1 was synthesized by direct cyclocondensation. Its structure was determined by an X-ray crystallographic analysis of a single crystal obtained by recrystallization from DMF. The intramolecular charge-transfer interactions of 1 and 2 were characterized by UV/vis spectroscopy and MO calculations. The UV/vis spectra showed that the tail of a longer wavelength absorption of both 1 and 2 reached the visible region. MO calculations (B3LYP/6-31G*) showed that the HOMO and LUMO orbitals of 1 and 2 substantially localize in the xylyl and pyromellitic diimide moieties across the methylene linker, respectively. The X-ray crystallographic analyses demonstrated that single crystals grown from a mixture of 1 and alpha-naphthol and a mixture of 1 and beta-naphthol were the clathrate compounds with 1D and 2D supramolecular assemblies, respectively, which are formed by a combination of hydrogen-bonding and charge-transfer interactions. From the cyclic voltammetry measurements, both 1 and 2 showed reversible reduction processes, and the reduction potential observed at -1.09 V vs Ag/Ag+ for 2 split into two potentials at -1.01 and -1.14 V for 1. The addition of alpha- and beta-naphthol induced a decrease in the potentials due to the diradical anion of 1 and radical anion of 2 by about 80 mV, and their reduction processes were reversible.  相似文献   

19.
Energy-variable collisionally activated dissociation (CAD) was used to analyze noncovalent interactions of protonated peptide/polyether complexes in a quadrupole ion trap complexes were formed with a series of four polyether host molecules and thirteen peptide molecules. Comparison of dissociation thresholds revealed correlations between the gas-phase basicities of the peptides and polyether molecules and the onset of dissociation. The dissociation thresholds of complexes containing the tripeptides or pentapeptides were inversely proportional to the gas-phase basicities of the sites of protonation of the peptides. Intramolecular hydrogen bonding of the pentapeptides affected the observed dissociation thresholds as well. The dissociation thresholds also scaled proportionally to the gas-phase basicities of the polyethers in the complexes, and the importance of the conformational flexibility of the polyether ligand was confirmed for one of the histidine-containing tripeptide complexes.  相似文献   

20.
Supramolecular chaperones play an important role in directing the assembly of multiple protein subunits and redox-active metal ions into precise, complex and functional quaternary structures. Here we report that hydroxyl tailed C-alkylpyrogallol[4]arene ligands and redox-active MnII ions, with the assistance of proline chaperone molecules, can assemble into two-dimensional (2D) and/or three-dimensional (3D) networked nanocapsules. Dimensionality is controlled by coordination between the exterior of nanocapsule subunits, and endohedral functionalization within the 2D system is achieved via chaperone guest encapsulation. The tailoring of surface properties of nanocapsules via coordination chemistry is also shown as an effective method for the fine-tuning magnetic properties, and electrochemical and spectroscopic studies support that the nanocapsule is an effective homogeneous water-oxidation electrocatalyst, operating at pH 6.07 with an exceptionally low overpotential of 368 mV.

Molecular chaperones play a critical role in directing the assembly of nanocapsules that assemble into 2D or 3D coordination networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号