首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A simple method for the functionalization of closo‐borates [closo‐B10H10]2? ( 1 ), [closo‐1‐CB9H10]? ( 2 ), [closo‐B12H12]2? ( 3 ), [closo‐1‐CB11H12]? ( 4 ), and [3,3′‐Co(1,2‐C2B9H11)2]? ( 5 ) is described. Treatment of the anions and their derivatives with ArI(OAc)2 gave aryliodonium zwitterions, which were sufficiently stable for chromatographic purification. The reactions of these zwitterions with nucleophiles provided facile access to pyridinium, sulfonium, thiol, carbonitrile, acetoxy, and amino derivatives. The synthetic results are augmented by mechanistic considerations.  相似文献   

2.
A new approach to synthesis of hetero-substituted derivatives of cobalt bis(1,2-dicarbollide) was proposed. The approach involves stepwise introduction of functional groups into different dicarbollide ligands. Halogenation of the monohydroxy derivative [8-OH-3,3??-Co-(1,2-C2B9H10)(1??,2??-C2B9H11)]? gave the corresponding halogen hydroxy derivatives [8-OH-8??-X-3,3??-Co(1,2-C2B9H10)2]? (X = Cl, Br, and I). Reactions of 8,8??-??-iodonium-3-commo-cobaltbis(1,2-dicarba-closo-dodecaborate) [8,8??-I-3,3??-Co(1,2-C2B9H10)2] with chloroform and 1,2-dibromoethane yielded the mixed halides [8-Y-8??-I-3,3??-Co(1,2-C2B9H10)2]? (Y = Cl and Br).  相似文献   

3.
Two‐electron reduction of 1,1′‐bis(o‐carborane) followed by reaction with [Ru(η‐mes)Cl2]2 affords [8‐(1′‐1′,2′‐closo‐C2B10H11)‐4‐(η‐mes)‐4,1,8‐closo‐RuC2B10H11]. Subsequent two‐electron reduction of this species and treatment with [Ru(η‐arene)Cl2]2 results in the 14‐vertex/12‐vertex species [1‐(η‐mes)‐9‐(1′‐1′,2′‐closo‐C2B10H11)‐13‐(η‐arene)‐1,13,2,9‐closo‐Ru2C2B10H11] by direct electrophilic insertion, promoted by the carborane substituent in the 13‐vertex/12‐vertex precursor. When arene=mesitylene (mes), the diruthenium species is fluxional in solution at room temperature in a process that makes the metal–ligand fragments equivalent. A unique mechanism for this fluxionality is proposed and is shown to be fully consistent with the observed fluxionality or nonfluxionality of a series of previously reported 14‐vertex dicobaltacarboranes.  相似文献   

4.
Sodium bis[2‐(3′,6′,9′‐trioxadecyl)‐1,2‐dicarba‐closo‐dodecaborane‐1‐carboxylato]triphenylstannate, [(CH3OCH2CH2OCH2CH2OCH2CH2)‐1,2‐C2B10H10‐9‐COO)2SnPh3]? Na+, compound 1, was synthesized by the 1:1 condensation of triphenyltin(IV) hydroxide with 2‐(3′,6′,9′‐trioxadecyl)‐1,2‐dicarba‐closo‐dodecaborane‐1‐carboxylic acid and crystallized in the presence of sodium bicarbonate. Its structure was determined by spectroscopy, elemental analysis and X‐ray diffraction. The structure of 1 consists of trigonal bipyramidal [Sn(Ph)3(L)2]? anions and Na+ cations coordinated by oxygen atoms of polyoxaalkyl chains of different stannate anions, forming cation–anion chains elongated along the c axis. Compound 1 is significantly more active in vitro against seven tumour cell lines of human origin than 5‐fluorouracil, cis‐platin, carboplatin, and previously reported organotin carboranecarboxylates, but is less active than organotin polyoxaalkylcarboxylates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The first artificially made set of electron acceptors is presented that are derived from a unique platform Cs[3,3′‐Co(C2B9H11)2], for which the redox potential of each differs from its predecessor by a fixed amount. The sequence of electron acceptors is made by substituting one, two, or more hydrogen atoms by chlorine atoms, yielding Cs[3,3′‐Co(C2B9H11?yCly)(C2B9H11?zClz)]. The higher the number of chlorine substituents, the more prone the platform is to be reduced. The effect is completely additive, so if a single substitution implies a reduction of 0.1 V of the redox potential of the parent complex, then ten substitutions imply a reduction of 1 V.  相似文献   

6.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

7.
A reaction of complexes CoCl2(dppe) (dppe is the 1,2-bis(diphenylphosphino)ethane) or CoCl2(dppp) (dppp is the 1,3-bis(diphenylphosphino)propane) with [K][7,8-nido-C2B9H12] upon reflux in benzene led to the mixed ligand closo-cobaltacarboranes [3,3-(Ph2P(CH2) n PPh2)-3-Cl-closo-3,1,2-CoIIIC2B9H11] (n = 2 and 3, respectively) in moderate yields (34 and 16%). The structure of the 18-electron complexes in solution and the solid state was studied by NMR and IR spectroscopy, the structure in the case of the closo-complex with dppe-ligand was confirmed by X-ray crystallography.  相似文献   

8.
Reactions between the arachno‐6,9‐C2B8H14 ( 1 ) dicarbaborane and acyl chlorides, RCOCl ( 2 ), are subject to stereocontrol that completely changes the nature of the reaction products. While most chlorides produce the 8‐R‐nido‐7,8,9‐C3B8H11 ( 3 ) tricarbollides (by skeletal alkylcarbonation=SAC), bulky RCOCls ( 2 ; where R=1‐adamantyl, 2 a ; 1‐mesityl, 2 b ; 9‐anthranyl, 2 c ; 1‐naphthyl, 2 d ) in 1,2‐dichloroethane (DCE) in the presence of triethylamine at 40–60 °C gave a series of entirely different 1‐R‐2‐CH3closo‐1,6‐C2B8H8 ( 4 ) dicarbaboranes upon acidification with conc. H2SO4 (by exosleletal alkylmehylation=EAM). Both types of reactions seem to proceed via a common [8‐R‐nido‐7,8,9‐C3B8H10]? ( 3? ) anion which in the EAM case is unstable because of steric crowd and undergoes rearrangement via the isomeric [R‐nido‐7,8,10‐C3B8H10]? tricarbollide structures which, on protonation, undergo reductive extraction of one CH vertex to generate the 2‐CH3 substituent in structure 4 .  相似文献   

9.
The 8,9′-[closo-{3-Co(η5-C5H5)-1,2-C2B9H10}]2 (1) species, in which two large closo-CoC2B9 sub-clusters are connected by a B-B bond, is unexpectedly obtained from the reaction of closo-[3-Co(η5-C5H5)-1,2-C2B9H11] with sulfur in the presence of aluminium chloride under reflux conditions. The solid state conformation of 1 seems to be the result of a pair of intramolecular C-H?H-B dihydrogen bonds between the protonic H atoms of the C5H5 fragment of a sub-cluster and the hydridic H atoms of the C2B9H11 fragment in the other sub-cluster in 1.  相似文献   

10.
Polyol Metal Complexes. 27. Bis-Diolato Antimonates(III ) with Guanosine as the Diol The complex anions of K3[SbIII(Guo1,2′,3′H?3)2] · 10 H2O ( 1 ) and [Co(NH3)6][SbIII(Guo1,2′,3′H?3)2] · 9 H2O ( 2 ) are four-coordinate homoleptic bis(diolato)antimonate(III ) species. The guanosine trianions act as carbohydrate ligands through their cis-furanoidic ribosyl moiety, thus forming no nucleobase–metal bonds.  相似文献   

11.
New hetero-substituted charge-compensated cobalt bis(1,2-dicarbollide) derivatives were synthesized by the reaction of 8,8′-μ-iodo-3-commo-3-cobalta-bis(1,2-dicarba-closo-dodecaborane) [8,8′-μ-I-3,3′-Co(1,2-C2B9H10)2] with 1,4-thioxane, pyridine N-oxide, and tetrahydropyran. X-ray diffraction studies showed that the 8′-iodo-8-(pyridiniumoxy)eucosahydro-1,1′,2,2′-tetracarba-3-commo-cobalta-closo-tricosaborate molecule has the gauche-conformation (the substituents are turned with respect to each other by 69.2°). The positive charge is predominantly localized on the N(Py) atom.  相似文献   

12.
Three dinuclear copper(I) complexes, [Cu2(µ‐Cl)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2CH2Cl2 ( 1 ), [Cu2(µ‐Br)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2THF ( 2 ) and {Cu2(µ‐I)2[1,2‐(PPh2)2‐1,2‐C2B10H10]2} ( 3 ) have been synthesized by the reactions of CuX (X = Cl, Br and I) with the closo ligand 1,2‐(PPh2)2‐1,2‐C2B10H10. All these complexes were characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy and X‐ray structure determination. Single crystal X‐ray structure determinations show that every complex contained di‐µ‐X‐bridged structure involving a crossed parallelogram plane formed by two Cu atoms and two X atoms (X = Cl, Br, I). The geometry at the Cu atom was a distorted tetrahedron, in which two positions were occupied by two P atoms of the PPh2 groups connected to the two C atoms of carborane (Cc), and the other two resulted from two X atoms which bridged the other Cu atom at the same time. To the best of our knowledge, this is the first example of copper(I) complexes with 1,2‐diphenylphosphino‐1,2‐dicarba‐closo‐dodecaborane as ligand characterized by X‐ray diffraction. The catalytic property of the complex 3 for the amination of iodobenzene with aniline was also investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In the title compound, (η5‐2,5‐di­methyl­pyrrolyl)[(7,8,9,10,11‐η)‐7‐methyl‐7,8‐dicarba‐nido‐undecaborato]­cobalt(III), [3‐Co{η5‐[2,5‐(CH3)2‐NC4H2]}‐1‐CH3‐1,2‐C2B9H10] or [Co(C3H13B9)(C6H8N)], the CoIII atom is sandwiched between the pentagonal faces of the pyrrolyl and dicarbollide ligands, resulting in a neutral mol­ecule. The C—C distance in the dicarbollide cage is 1.649 (3) Å.  相似文献   

14.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

15.
The redox aptitude of a series of cobalt(III) or cobalt(I) sandwich complexes bearing a charge compensated dicarbollide ligand ([9-L-7,8-C2B9H10]) as a constant unit and different counterparts (varying from classical [7,8-C2B9H11]2− to charge-compensated [9-L-7,8-C2B9H10] dicarbollides, from cyclopentadienyl [C5R5] (R = Me, H) to cyclobutadiene [C4Me4]0 ligands) has been studied. All the Co(III) complexes display the reversible sequence Co(III)/Co(II)/Co(I). In contrast, the Co(I) complexes (namely, those capped by tetramethylcyclobutadiene) accede reversibly only to the Co(II) oxidation state, the passage to Co(III) being irreversible. When possible, the Co(II) intermediates have been characterized by EPR spectroscopy. The molecular structures of the monocation [Co(η-9-SMe2-7,8-C2B9H10)2]+ in its DD/LL and meso diastereomeric forms as well as that of heteroleptic (η-7,8-C2B9H11)Co(η-9-SMe2-7,8-C2B9H10) have been obtained by single-crystal diffraction. Presented at the 3rd Chianti Electrochemistry Meetings July 3−9, 2004, Certosa di Pontignano, Italy  相似文献   

16.
The treatment of 1,2-, 1,7- and 1,12-carbaborane lithiated isomers with [3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-(1′,2′-C2B9H11)] (1) at molar ratios 1:1 or 1:2 at room temperature in THF leads generally to the formation of a series of orange double-cluster mono and dianions. These were characterized by NMR and MS methods as [1′′-X-1′′,2′′-closo-C2B10H11], [2]; [1′′-X-1′′,7′′-closo-C2B10H11], [3] and [1′′-X-1′′,12′′-closo-C2B10H11], [4] for the monoanions, whereas [1′′,2′′-X2-1′′,2′′-closo-C2B10H10]2−, [2]2−; [1′′,7′′-X2-1′′,7′′-closo-C2B10H10]2−, [3]2−; and [1′′,12′′-X2-1′′,12′′-closo-C2B10H10]2−, [4]2− for the dianions (where X = 3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-1′,2′-(C2B9H11)). Moreover, these borane-cage subunits can be easily modified via attaching variable substituents onto cage carbon and boron vertices, which makes these compounds structurally flexible potential candidates for BNCT of cancer and HIV-PR inhibition.  相似文献   

17.
The crystal structures of numerous iodinated ortho‐carboranes have been studied, which has revealed the diversity of intermolecular interactions that these substances can adopt in the solid state. The nature—mostly as it relates to hydrogen and/or halogen bonds—and relative strength of such interactions can be adjusted by selectively introducing substituents onto the cluster, thus enabling the rational design of crystal lattices. In this work we present the newly determined crystal structures of the following iodinated ortho‐carboranes: 9‐I‐1,2‐closo‐C2B10H11, 4,5,7,8,9,10,11,12‐I8‐1,2‐closo‐C2B10H4, 3,4,5,6,7,8,9,10,11,12‐I10‐1,2‐closo‐C2B10H2, 1‐Me‐8,9,10,12‐I4‐1,2‐closo‐C2B10H7, 1,2‐Me2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6, and 1,2‐Ph2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6. Their 3D supramolecular organization has been thoroughly investigated and compared to similar previously published crystal structures. Such a systematic survey has allowed us to draw some general trends. Cc? H???I? B hydrogen bonds (Cc= cluster carbon atoms) appear to be significant in the growth of the crystal lattices of these compounds, given the acidity of hydrogen atoms bonded to Cc, and the polarization of B? I bonds. These hydrogen bonds can be disrupted by selectively blocking the positions next to Cc, that is, B(3) and B(6), with bulky substituents that prevent iodine atoms from approaching as hydrogen acceptors. Halogen bonds of the type B? I???I? B are frequently observed in most cases, thus suggesting that these interactions could be attractive in boron clusters. In addition, different substituents can be grafted onto the ortho‐carborane surface, thereby providing further possibilities for homomeric or heteromeric molecular assembly.  相似文献   

18.
The treatment of [1,1‐(PR3)2‐3‐(Py)‐closo‐1,2‐RhSB9H8] (PR3=PMe3 ( 2 ) or PPh3 and PMe3 ( 3 ); Py=pyridine) with triflic acid (TfOH) affords [1,3‐μ‐(H)‐1,1‐(PR3)2‐3‐(Py)‐1,2‐RhSB9H8]+ (PR3=PMe3 ( 4 ) or PMe3 and PPh3 ( 5 )). These products result from the protonation of the 11‐vertex closo‐cages along the Rh(1)? B(3) edge. These unusual cationic rhodathiaboranes are stable in solution and in the solid state and they have been fully characterized by multinuclear NMR spectroscopy. In addition, compound 5 was characterized by single‐crystal X‐ray diffraction. One remarkable feature in these structures is the presence of three {Rh(PPh3)(PMe3)}‐to‐{ηn‐SB9H8(Py)} (n=4 or 5) conformers in the unit cell, thus giving an uncommon case of conformational isomerism. [1,1‐(PPh3)2‐3‐(Py)‐closo‐1,2‐RhSB9H8] ( 1 ), that is, the bis‐PPh3‐ligated analogue of compounds 2 and 3 , is also protonated by TfOH, but, in marked contrast, the resulting cation, [1,3‐μ‐(H)‐1,1‐(PPh3)2‐3‐(Py)‐1,2‐RhSB9H8]+ ( 6 ), is attacked by a triflate anion with the release of a PPh3 ligand and the formation of [8,8‐(OTf)(PPh3)‐9‐(Py)‐nido‐8,7‐RhSB9H9] ( 9 ). The result is an equilibrium that involves cationic species 6 , neutral OTf‐ligated compound 9 , and [HPPh3]+, which is formed upon protonation of the released PPh3 ligand. The resulting ionic system reacts readily with H2 to give cationic species [8,8,8‐(H)(PPh3)2‐9‐(Py)‐nido‐8,7‐RhSB9H9]+ ( 7 ). This reactivity is markedly higher than that previously found for compound 1 and it introduces a new example of proton‐assisted H2 activation that occurs on a polyhedral boron‐containing compound.  相似文献   

19.
The ruthenacarborane complexes of the exo-nido- and closo-structure, namely, diamagnetic exo-nido-5,6,10-[RuCl(PPh3)2]-5,6,10-(μ-H)3-10-H-7,8-(CH3)2-7,8-C2B9H6, 3,3-[Ph2P(CH2) n PPh2]-3-H-3-Cl-closo-3,1,2-RuC2B9H11 (n = 4, 5), paramagnetic 3,3-[Ph2P(CH2) n PPh2]-3-Cl-closo-3,1,2-RuC2B9H11 (n = 2–5), and their some ortho-phenylenecycloboronated derivatives, were studied by cyclic voltammetry. All chelate closo-complexes are characterized by reversible redox transitions, while the exo-nido-complex is liable to irreversible oxidation. Shortening of the methylene link in the diphosphine ligand of closo-ruthenacarboranes and/or the introduction of ortho-phenylenecycloboronated moieties and methyl substituents to the carbon atoms of the {C2B9} ligand lead to a decrease in the redox potential and electron density redistribution to the metal atom. A comparison of the experimental results on methyl methacrylate polymerization in the presence of the catalytic systems based on the studied metallacarboranes with the data on their electrochemical characteristics suggests that the efficiency of using the ruthenium complexes as catalysts is mainly determined by steric factors.  相似文献   

20.
In the title compound, 1,2‐(SCH3)2‐1,2‐closo‐C2B10H10 or C4H16B10S2, the methylsulfanyl groups are bonded to the C atoms of the 1,2‐dicarba‐closo‐dodecaborane cage. The Ccage—Ccage distance is 1.8033 (18) Å and the S—Ccage—Ccage—S torsion angle is 1.07 (13)°. The Ccage—Ccage distance is compared with those in other 1,2‐dicarba‐closo‐dodecaborane derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号