首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bottom‐up synthesis of organometallic zinc clusters is described. The cation {[Zn10](Cp*)6Me}+ ( 1 ) is obtained by reacting [Zn2Cp*2] with [FeCp2][BAr4F] in the presence of ZnMe2. In the presence of suitable ligands, the high reactivity of 1 enables the controlled abstraction of single Zn units, providing access to the lower‐nuclearity clusters {[Zn9](Cp*)6} ( 2 ) and {[Zn8](Cp*)5(tBuNC)3}+ ( 3 ). According to DFT calculations, 1 and 2 can be described as closed‐shell species that are electron‐deficient in terms of the Wade–Mingos rules because the apical ZnCp* units that constitute the cluster cage do not have three, but only one, frontier orbitals available for cluster bonding. Zinc behaves flexibly in building the skeletal metal–metal bonds, sometimes providing one major frontier orbital (like Group 11 metals) and sometimes providing three frontier orbitals (like Group 13 elements).  相似文献   

2.
Reaction of aminoboranes H2B=NR2 (R=iPr or Cy) with the cationic Cp*IrIII phosphoramidate complex [IrCp*{κ2‐N,O‐Xyl(N)P(O)(OEt)2}][BArF4] generates the aminoborane complexes [IrCp*(H){κ1N‐η2‐HB‐Xyl(N)P(OBHNR2)(OEt)2}][BArF4] (R=iPr or Cy) in which coordination of a P=O bond with boron weakens the B=N multiple bond. For these complexes, solution‐ and solid‐state, as well as DFT computational techniques, have been employed to substantiate B?N bond rotation of the coordinated aminoborane.  相似文献   

3.
The ditopic germanium complex FGe(NIPr)2Ge[BF4] ( 3 [BF4]; IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene) is prepared by the reaction of the amino(imino)germylene (Me3Si)2NGeNIPr ( 1 ) with BF3?OEt2. This monocation is converted into the germylene‐germyliumylidene 3 [BArF4] [ArF=3,5‐(CF3)2‐C6H3] by treatment with Na[BArF4]. The tetrafluoroborate salt 3 [BF4] reacts with 2 equivalents of Me3SiOTf to give the novel complex (OTf)(GeNIPr)2[OTf] ( 4 [OTf]), which affords 4 [BArF4] and 4 [Al(ORF)4] [RF=C(CF3)3] after anion exchange with Na[BArF4] or Ag[Al(ORF)4], respectively. The computational, as well as crystallographic study, reveals that 4 + has significant bis(germyliumylidene) dication character.  相似文献   

4.
The pnictocenium salts [Cp*PCl]+[μCl]? ( 1 a ), [Cp*PCl]+[ClAl(ORF)3]? ( 1 b ), [Cp*AsCl]+[ClAl(ORF)3]? ( 2 ), and [(Cp*)2P]+[μCl]? ( 3 ), in which Cp*=Me5C5, μCl=(FRO)3Al? Cl? Al(ORF)3, and ORF=OC(CF3)3, were prepared by halide abstraction from the respective halopnictines with the Lewis superacid PhF→Al(ORF)3. 1 The X‐ray crystal structures of 1 a , 2 , and 3 established that in the half as well as in the sandwich cations the Cp* rings are attached in an η2‐fashion. By using one or two equivalents of the Lewis acid, the two new weakly coordinating anions [μCl]? and [ClAl(ORF)3]? resulted. They also stabilize the highly reactive cations in PhF or 1,2‐F2C6H4 solution at room temperature. The chloride ion affinities (CIAs) of a range of classical strong Lewis acids were also investigated. The calculations are based on a set of isodesmic BP86/SV(P) reactions and a non‐isodesmic reference reaction assessed at the G3MP2 level.  相似文献   

5.
Ion‐like ethylzinc(II) compounds with weakly coordinating aluminates [Al(ORF)4]? and [(RFO)3Al‐F‐Al(ORF)3]? (RF=C(CF3)3) were synthesized in a one‐pot reaction and fully characterized by single‐crystal X‐ray diffraction, NMR and vibrational spectroscopy, and by quantum chemical calculations. The catalytic activity of ion‐like Et‐Zn[Al(ORF)4] in intermolecular hydroamination and in the unusual double hydroamination of anilines and alkynes was investigated. Favorable performance was also found in comparison to the Et2Zn/ [PhNMe2H]+[B(C6F5)4]? system generated in situ at lower catalyst loadings of 2.5 mol %.  相似文献   

6.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   

7.
Addition of the amine–boranes H3B ? NH2tBu, H3B ? NHMe2 and H3B ? NH3 to the cationic ruthenium fragment [Ru(xantphos)(PPh3)(OH2)H][BArF4] ( 2 ; xantphos=4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene; BArF4=[B{3,5‐(CF3)2C6H3}4]?) affords the η1‐B? H bound amine–borane complexes [Ru(xantphos)(PPh3)(H3B ? NH2tBu)H][BArF4] ( 5 ), [Ru(xantphos)(PPh3)(H3B ? NHMe2)H][BArF4] ( 6 ) and [Ru(xantphos)(PPh3)(H3B ? NH3)H][BArF4] ( 7 ). The X‐ray crystal structures of 5 and 7 have been determined with [BArF4] and [BPh4] anions, respectively. Treatment of 2 with H3B ? PHPh2 resulted in quite different behaviour, with cleavage of the B? P interaction taking place to generate the structurally characterised bis‐secondary phosphine complex [Ru(xantphos)(PHPh2)2H][BPh4] ( 9 ). The xantphos complexes 2 , 5 and 9 proved to be poor precursors for the catalytic dehydrogenation of H3B ? NHMe2. While the dppf species (dppf=1,1′‐bis(diphenylphosphino)ferrocene) [Ru(dppf)(PPh3)HCl] ( 3 ) and [Ru(dppf)(η6‐C6H5PPh2)H][BArF4] ( 4 ) showed better, but still moderate activity, the agostic‐stabilised N‐heterocyclic carbene derivative [Ru(dppf)(ICy)HCl] ( 12 ; ICy=1,3‐dicyclohexylimidazol‐2‐ylidene) proved to be the most efficient catalyst with a turnover number of 76 h?1 at room temperature.  相似文献   

8.
Zincocene Cp*2Zn reacts with carbodiimides C(NR)2 with insertion into the Zn–Cp* bond and formation of [(Cp*C(NR)2]2Zn [R = Et ( 1 ), iPr ( 2 ), Cy ( 3 )]. In addition, the reaction of Cp*2Zn with CS2 under dry conditions gives (Cp*CS2)2Zn ( 4 ), whereas in the presence of a small amount of water [Zn44‐O)(S2CCp*)6] ( 5 ) is obtained. Compounds 1 – 4 were characterized by NMR (1H, 13C) and IR spectroscopy as well as elemental analysis and single‐crystal X‐ray diffraction ( 2 – 4 , 5 of poor quality). The solid‐state structure of 5 is comparable to the carboxylate complex previously obtained from the reaction of Cp*2Zn with CO2.  相似文献   

9.
When activated with fluorinated borate cocatalysts the trimetallic complexes [Cp*LnMe2]3 (Ln=Y, Lu; Cp*=C5Me5) promote efficiently the formation of high-cis polybutadiene. Respective polyisoprenes instead bear much less pronounced microstructures, but reveal crosslinked products at lower polymerization temperatures. Varying the amount of cocatalyst, the emerging active species were examined by NMR spectroscopic techniques (incl. 1H DOSY). The occurrence of donor-solvent and thermally induced degradation products of the highly reactive precatalyst [Cp*YMe2]3 and derived catalyst species was revealed by the elucidation of methylidene clusters [Cp*3Y3Me4(CH2)(thf)2] and [Cp*6Y6Me4(CH2)4], as well as [(Cp*Y)2Me2(N(Me)2(C6H4)]n[B(C6F5)4]n, implying a multimetallic active species.  相似文献   

10.
Synthesis and deprotonation reactions of half‐sandwich iridium complexes bearing a vicinal dioxime ligand were studied. Treatment of [{Cp*IrCl(μ‐Cl)}2] (Cp*=η5‐C5Me5) with dimethylglyoxime (LH2) at an Ir:LH2 ratio of 1:1 afforded the cationic dioxime iridium complex [Cp*IrCl(LH2)]Cl ( 1 ). The chlorido complex 1 undergoes stepwise and reversible deprotonation with potassium carbonate to give the oxime–oximato complex [Cp*IrCl(LH)] ( 2 ) and the anionic dioximato(2?) complex K[Cp*IrCl(L)] ( 3 ) sequentially. Meanwhile, twofold deprotonation of the sulfato complex [Cp*Ir(SO4)(LH2)] ( 4 ) resulted in the formation of the oximato‐bridged dinuclear complex [{Cp*Ir(μ‐L)}2] ( 5 ). X‐ray analyses disclosed their supramolecular structures with one‐dimensional infinite chain ( 1 and 2 ), hexagonal open channels ( 3 ), and a tetrameric rhomboid ( 4 ) featuring multiple intermolecular hydrogen bonds and electrostatic interactions.  相似文献   

11.
Oxidative addition of aryl bromides to 12‐electron [Rh(PiBu3)2][BArF4] (ArF=3,5‐(CF3)2C6H3) forms a variety of products. With p‐tolyl bromides, RhIII dimeric complexes result [Rh(PiBu3)2(o/p‐MeC6H4)(μ‐Br)]2[BArF4]2. Similarly, reaction with p‐ClC6H4Br gives [Rh(PiBu3)2(p‐ClC6H4)(μ‐Br)]2[BArF4]2. In contrast, the use of o‐BrC6H4Me leads to a product in which toluene has been eliminated and an isobutyl phosphine has undergone C? H activation: [Rh{PiBu2(CH2CHCH3C H2)}(PiBu3)(μ‐Br)]2[BArF4]2. Trapping experiments with ortho‐bromo anisole or ortho‐bromo thioanisole indicate that a possible intermediate for this process is a low‐coordinate RhIII complex that then undergoes C? H activation. The anisole and thioanisole complexes have been isolated and their structures show OMe or SMe interactions with the metal centre alongside supporting agostic interactions, [Rh(PiBu3)2(C6H4O Me)Br][BArF4] (the solid‐state structure of the 5‐methyl substituted analogue is reported) and [Rh(PiBu3)2(C6H4S Me)Br][BArF4]. The anisole‐derived complex proceeds to give [Rh{PiBu2(CH2CHCH3C H2)}(PiBu3)(μ‐Br)]2[BArF4]2, whereas the thioanisole complex is unreactive. The isolation of [Rh(PiBu3)2(C6H4O Me)Br][BArF4] and its onward reactivity to give the products of C? H activation and aryl elimination suggest that it is implicated on the pathway of a σ‐bond metathesis reaction, a hypothesis strengthened by DFT calculations. Calculations also suggest that C? H bond cleavage through phosphine‐assisted deprotonation of a non‐agostic bond is also competitive, although the subsequent protonation of the aryl ligand is too high in energy to account for product formation. C? H activation through oxidative addition is also ruled out on the basis of these calculations. These new complexes have been characterised by solution NMR/ESIMS techniques and in the solid‐state by X‐ray crystallography.  相似文献   

12.
The five‐coordinate ruthenium N‐heterocyclic carbene (NHC) hydrido complexes [Ru(IiPr2Me2)4H][BArF4] ( 1 ; IiPr2Me2=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene; ArF=3,5‐(CF3)2C6H3), [Ru(IEt2Me2)4H][BArF4] ( 2 ; IEt2Me2=1,3‐diethyl‐4,5‐dimethylimidazol‐2‐ylidene) and [Ru(IMe4)4H][BArF4] ( 3 ; IMe4=1,3,4,5‐tetramethylimidazol‐2‐ylidene) have been synthesised following reaction of [Ru(PPh3)3HCl] with 4–8 equivalents of the free carbenes at ambient temperature. Complexes 1 – 3 have been structurally characterised and show square pyramidal geometries with apical hydride ligands. In both dichloromethane or pyridine solution, 1 and 2 display very low frequency hydride signals at about δ ?41. The tetramethyl carbene complex 3 exhibits a similar chemical shift in toluene, but shows a higher frequency signal in acetonitrile arising from the solvent adduct [Ru(IMe4)4(MeCN)H][BArF4], 4 . The reactivity of 1 – 3 towards H2 and N2 depends on the size of the N‐substituent of the NHC ligand. Thus, 1 is unreactive towards both gases, 2 reacts with both H2 and N2 only at low temperature and incompletely, while 3 affords [Ru(IMe4)42‐H2)H][BArF4] ( 7 ) and [Ru(IMe4)4(N2)H][BArF4] ( 8 ) in quantitative yield at room temperature. CO shows no selectivity, reacting with 1 – 3 to give [Ru(NHC)4(CO)H][BArF4] ( 9 – 11 ). Addition of O2 to solutions of 2 and 3 leads to rapid oxidation, from which the RuIII species [Ru(NHC)4(OH)2][BArF4] and the RuIV oxo chlorido complex [Ru(IEt2Me2)4(O)Cl][BArF4] were isolated. DFT calculations reproduce the greater ability of 3 to bind small molecules and show relative binding strengths that follow the trend CO ? O2 > N2 > H2.  相似文献   

13.
The treatment of silica with alkylaluminum compounds, triisobutylaluminum (TIBA) and triethylaluminum (TEA), dramatically enhanced the cocatalytic performances of the [CPh3]+[B(C6F5)3—SiO2]. We measured the productivity and ethylene‐consumption profiles for [CPh3]+[B(C6F5)3—SiO2] cocatalysts and Cp2ZrCl2/TIBA. Both of the treated cocatalyst systems improved the average molecular weight of the product when compared with the untreated cocatalyst system. The TIBA‐treated cocatalyst provided a narrow molecular weight distribution while the TEA‐treated cocatalyst system gave a broad distribution.  相似文献   

14.
Chloride abstraction from [(R,R)‐(iPrDuPhos)Co(μ‐Cl)]2 with NaBArF4 (BArF4=B[(3,5‐(CF3)2)C6H3]4) in the presence of dienes, such as 1,5‐cyclooctadiene (COD) or norbornadiene (NBD), yielded long sought‐after cationic bis(phosphine) cobalt complexes, [(R,R)‐(iPrDuPhos)Co(η22‐diene)][BArF4]. The COD complex proved substitutionally labile undergoing diene substitution with tetrahydrofuran, NBD, or arenes. The resulting 18‐electron, cationic cobalt(I) arene complexes, as well as the [(R,R)‐(iPrDuPhos)Co(diene)][BArF4] derivatives, proved to be highly active and enantioselective precatalysts for asymmetric alkene hydrogenation. A cobalt–substrate complex, [(R,R)‐(iPrDuPhos)Co(MAA)][BArF4] (MAA=methyl 2‐acetamidoacrylate) was crystallographically characterized as the opposite diastereomer to that expected for productive hydrogenation demonstrating a Curtin–Hammett kinetic regime similar to rhodium catalysis.  相似文献   

15.
[PdCl(TeMe2)3]BArF ( 4 ) forms as the major tellurium containing product from the reaction of [(4‐Mebti)PdCl] with TeMe2 and Na(BArF) and is isolated by crystallization from the reaction mixture. At ?20 °C, the compound forms orange columns from toluene/pentane, space group , with Z = 2. In the solid, the cationic [PdCl(TeMe2)3]+ complex ions show a non‐planar PdClTe3 coordination unit and are associated to dimers via weak Pd···Te interactions.  相似文献   

16.
The reactions of Cp*M(PMe3)Cl2 (M = Rh ( 1a ), Ir ( 1b )) with (NEt4)2[WS4] led to the heterodimetallic sulfido‐bridged complexes Cp*M(PMe3)[(μ‐S)2WS2] (M = Rh ( 2a ), Ir ( 2b )), whereas the dimers [Cp*MCl(μ‐Cl)]2 (M = Rh ( 4a ), Ir ( 4b )) reacted with (NEt4)2[WS4) to give the known trinuclear compounds [Cp*M(Cl)]2(μ‐WS4) (M = Rh ( 5a ), Ir ( 5b )). Hydrolysis of the terminal W=S bonds converts 2a, b into Cp*M(PMe3)[(μ‐S)2WO2] (M = Rh ( 3a ), Ir ( 3b )). Salts of a heterodimetallic anion, A[CpMo(I)(NO)(WS4)] ( 6 ) (A+ = NEt4+, NPh4+) were obtained by reactions of [CpMo(NO)I2]2 with tetrathiotungstates, A2[WS4]. The complexes were characterized by IR and NMR (1H, 13C, 31P) spectroscopy, and the X‐ray crystallographic structure of Cp*Rh(PMe3)[(μ‐S)2WS2] ( 2a ) has been determined. The bond lengths and angles in the coordinations spheres of Rh and W in 2a (Rh···W 288.5(1) pm) are compared with related complexes containing terminal [WS42—] chelate ligands.  相似文献   

17.
The perfluorinated dihydrophenazine derivative (perfluoro‐5,10‐bis(perfluorophenyl)‐5,10‐dihydrophenazine) (“phenazineF”) can be easily transformed to a stable and weighable radical cation salt by deelectronation (i.e. oxidation) with Ag[Al(ORF)4]/ Br2 mixtures (RF=C(CF3)3). As an innocent deelectronator it has a strong and fully reversible half‐wave potential versus Fc+/Fc in the coordinating solvent MeCN (E°′=1.21 V), but also in almost non‐coordinating oDFB (=1,2‐F2C6H4; E°′=1.29 V). It allows for the deelectronation of [FeIIICp*2]+ to [FeIV(CO)Cp*2]2+ and [FeIV(CN‐tBu)Cp*2]2+ in common laboratory solvents and is compatible with good σ‐donor ligands, such as L=trispyrazolylmethane, to generate novel [M(L)x]n+ complex salts from the respective elemental metals.  相似文献   

18.
A series of binuclear complexes [{Cp*Ir(OOCCH2COO)}2(pyrazine)] ( 1 b ), [{Cp*Ir(OOCCH2COO)}2(bpy)] ( 2 b ; bpy=4,4′‐bipyridine), [{Cp*Ir(OOCCH2COO)}2(bpe)] ( 3 b ; bpe=trans‐1,2‐bis(4‐pyridyl)ethylene) and tetranuclear metallamacrocycles [{(Cp*Ir)2(OOC‐C?C‐COO)(pyrazine)}2] ( 1 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpy)}2] ( 2 c ), [{(Cp*Ir)2(OOC‐C?C‐COO)(bpe)}2] ( 3 c ), and [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](pyrazine)}2] ( 1 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpy)}2] ( 2 d ), [{(Cp*Ir)2[OOC(H3C6)‐N?N‐(C6H3)COO](bpe)}2] ( 3 d ) were formed by reactions of 1 a – 3 a {[(Cp*Ir)2(pyrazine)Cl2] ( 1 a ), [(Cp*Ir)2(bpy)Cl2] ( 2 a ), and [(Cp*Ir)2(bpe)Cl2] ( 3 a )} with malonic acid, fumaric acid, or H2ADB (azobenzene‐4,4′‐chcarboxylic acid), respectively, under mild conditions. The metallamacrocycles were directly self‐assembled by activation of C? H bonds from dicarboxylic acids. Interestingly, after exposure to UV/Vis light, 3 c was converted to [2+2] cycloaddition complex 4 . The molecular structures of 2 b , 1 c , 1 d , and 4 were characterized by single‐crystal x‐ray crystallography. Nanosized tubular channels, which may play important roles for their stability, were also observed in 1 c , 1 d , and 4 . All complexes were well characterized by 1H NMR and IR spectroscopy, as well as elemental analysis.  相似文献   

19.
The speciation of compounds [Cp*2M2O5] (M=Mo, W; Cp*=pentamethylcyclopentadienyl) in different protic and aprotic polar solvents (methanol, dimethyl sulfoxide, acetone, acetonitrile), in the presence of variable amounts of water or acid/base, has been investigated by 1H NMR spectrometry and electrical conductivity. Specific hypotheses suggested by the experimental results have been further probed by DFT calculations. The solvent (S)‐assisted ionic dissociation to generate [Cp*MO2(S)]+ and [Cp*MO3]? takes place extensively for both metals only in water/methanol mixtures. Equilibrium amounts of the neutral hydroxido species [Cp*MO2(OH)] are generated in the presence of water, with the relative amount increasing in the order MeCN≈acetone<MeOH<DMSO. Addition of a base (Et3N) converts [Cp*2M2O5] into [Et3NH]+[Cp*MO3]?, for which the presence of a N? H???O?M interaction is revealed by 1H NMR spectroscopy in comparison with the sodium salts, Na+[Cp*MO3]?. These are fully dissociated in DMSO and MeOH, but display a slow equilibrium between free ions and the ion pair in MeCN and acetone. Only one resonance is observed for mixtures of [Cp*MO3]? and [Cp*MO2(OH)] because of a rapid self‐exchange. In the presence of extensive ionic dissociation, only one resonance is observed for mixtures of the cationic [Cp*MO2(S)]+ product and the residual undissociated [Cp*2M2O5] because of a rapid associative exchange via the trinuclear [Cp*3M3O7]+ intermediate. In neat methanol, complex [Cp*2W2O5] reacts to yield extensive amounts of a new species, formulated as the mononuclear methoxido complex [Cp*WO2(OMe)] on the basis of the DFT study. An equivalent product is not observed for the Mo system. The addition of increasing amounts of water results in the rapid decrease of this product in favor of [Cp*2W2O5] and [Cp*WO2(OH)].  相似文献   

20.
The crystal network of [Cp′2Ti(N?CH3? Gly)2]2+[Cl?]2 (Cp′ = (CH3)C5H4) complex, which crystallizes as a solvate with CH3OH, is built up with discrete cationic units connected through intermolecular H· · ·Cl bonds. The α‐amino acid ligands are attached through an intramolecular H· · ·O bond within one cationic unit. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号