首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unreported d,l ‐tripeptide self‐assembled into gels that embedded FeII4L4 metal–organic cages to form materials that were characterized by TEM, EDX, Raman spectroscopy, rheometry, UV/Vis and NMR spectroscopy, and circular dichroism. The cage type and concentration modulated gel viscoelasticity, and thus the diffusion rate of molecular guests through the nanostructured matrix, as gauged by 19F and 1H NMR spectroscopy. When two different cages were added to spatially separated gel layers, the gel–cage composite material enabled the spatial segregation of a mixture of guests that diffused into the gel. Each cage selectively encapsulated its preferred guest during diffusion. We thus present a new strategy for using nested supramolecular interactions to enable the separation of small molecules.  相似文献   

2.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

3.
Construction of supramolecular structures with internal functionalities is a promising approach to build enzyme-like cavities. The endo-functionalized [Pd12L24] and [Pd2L4] coordination cages represent the most successful systems in this regard. However, these systems mainly contain one type of endo-moiety. We herein provide a solution for the controlled endo-functionalization of [Pd2L4] cages. Site-selective introduction of the endo-functional group was achieved through the formation of heteroleptic [Pd2( LA )2( LB )( LC )] cages. Using two orthogonal steric control elements is the key for the selective formation of the hetero-assemblies. We demonstrated the construction of two hetero-cages with a single internal functional group as well as a hetero-cage with two distinct endohedral functionalities. The endo-functionalized hetero-cages bound sulfonate guests with fast-exchange dynamics. This strategy provides a new solution for the controlled endo-functionalization of supramolecular cavities.  相似文献   

4.
Chiral nanosized confinements play a major role for enantioselective recognition and reaction control in biological systems. Supramolecular self‐assembly gives access to artificial mimics with tunable sizes and properties. Herein, a new family of [Pd2L4] coordination cages based on a chiral [6]helicene backbone is introduced. A racemic mixture of the bis‐monodentate pyridyl ligand L1 selectively assembles with PdII cations under chiral self‐discrimination to an achiral meso cage, cis‐[Pd2 L1P 2 L1M 2]. Enantiopure L1 forms homochiral cages [Pd2 L1P/M 4]. A longer derivative L2 forms chiral cages [Pd2 L2P/M 4] with larger cavities, which bind optical isomers of chiral guests with different affinities. Owing to its distinct chiroptical properties, this cage can distinguish non‐chiral guests of different lengths, as they were found to squeeze or elongate the cavity under modulation of the helical pitch of the helicenes. The CD spectroscopic results were supported by ion mobility mass spectrometry.  相似文献   

5.
The construction of stimuli‐responsive materials by using naturally occurring molecules as building blocks has received increasing attention owing to their bioavailability, biocompatibility, and biodegradability. Herein, a symmetrical azobenzene‐functionalized natural glycyrrhizic acid (trans‐ GAG ) was synthesized and could form stable supramolecular gels in DMSO/H2O and MeOH/H2O. Owing to transcis isomerization, this gel exhibited typical light‐responsive behavior that led to a reversible gel–sol transition accompanied by a variation in morphology and rheology. Additionally, this trans‐ GAG gel displayed a distinct injectable self‐healing property and outstanding biocompatibility. This work provides a simple yet rational strategy to fabricate stimuli‐responsive materials from naturally occurring, eco‐friendly molecules.  相似文献   

6.
A series of metal‐mediated cages, having multiple cavities, was synthesized from PdII cations and tris‐ or tetrakis‐monodentate bridging ligands and characterized by NMR spectroscopy, mass spectrometry, and X‐ray methods. The peanut‐shaped [Pd3L14] cage deriving from the tris‐monodentate ligand L1 could be quantitatively converted into its interpenetrated [5Cl@Pd6L18] dimer featuring a linear {[Pd‐Cl‐]5Pd} stack as an unprecedented structural motif upon addition of chloride anions. Small‐angle neutron scattering (SANS) experiments showed that the cigar‐shaped assembly with a length of 3.7 nm aggregates into mono‐layered discs of 14 nm diameter via solvophobic interactions between the hexyl sidechains. The hepta‐cationic [5Cl@Pd6L18] cage was found to interact with polyanionic oligonucleotide double‐strands under dissolution of the aggregates in water, rendering the compound class interesting for applications based on non‐covalent DNA binding.  相似文献   

7.
The porphyrin boxes ( PB‐1 and PB‐2 ), which are rationally designed porous organic cages with a large cavity using well‐defined and rigid 3‐connected triangular and 4‐connected square shaped building units are reported. PB‐1 has a cavity as large as 1.95 nm in diameter and shows high chemical stability in a broad pH range (4.8 to 13) in aqueous media. The crystalline nature as well as cavity structure of the shape‐persistent organic cage crystals were intact even after complete removal of guest molecules, leading to one of the highest surface areas (1370 m2g?1) among the known porous organic molecular solids. The size of the cavities and windows of the porous organic cages can be modulated using different sized building units while maintaining the topology of the cages, as illustrated with PB‐2 . Interestingly, PB‐2 crystals showed unusual N2 sorption isotherms as well as high selectivity for CO2 over N2 and CH4 (201 and 47.9, respectively at 273 K at 1 bar).  相似文献   

8.
Biological function arises by the assembly of individual biomolecular modules into large aggregations or highly complex architectures. A similar strategy is adopted in supramolecular chemistry to assemble complex and highly ordered structures with advanced functions from simple components. Here we report a series of diamond‐like supramolecular frameworks featuring mesoporous cavities, which are assembled from metal‐imidazolate coordination cages and various anions. Small components (metal ions, amines, aldehydes, and anions) are assembled into the hierarchical complex structures through multiple interactions including covalent bonds, dative bonds, and weak C? H???X (X=O, F, and π) hydrogen bonds. The mesoporous cavities are large enough to trap organic dye molecules, coordination cages, and vitamin B12. The study is expected to inspire new types of crystalline supramolecular framework materials based on coordination motifs and inorganic ions.  相似文献   

9.
We report a supramolecular strategy for promoting the selective reduction of O2 for direct electrosynthesis of H2O2. We utilized cobalt tetraphenylporphyrin (Co‐TPP), an oxygen reduction reaction (ORR) catalyst with highly variable product selectivity, as a building block to assemble the permanently porous supramolecular cage Co‐PB‐1(6) bearing six Co‐TPP subunits connected through twenty‐four imine bonds. Reduction of these imine linkers to amines yields the more flexible cage Co‐rPB‐1(6). Both Co‐PB‐1(6) and Co‐rPB‐1(6) cages produce 90–100 % H2O2 from electrochemical ORR catalysis in neutral pH water, whereas the Co‐TPP monomer gives a 50 % mixture of H2O2 and H2O. Bimolecular pathways have been implicated in facilitating H2O formation, therefore, we attribute this high H2O2 selectivity to site isolation of the discrete molecular units in each supramolecule. The ability to control reaction selectivity in supramolecular structures beyond traditional host–guest interactions offers new opportunities for designing such architectures for a broader range of catalytic applications.  相似文献   

10.
Stimuli‐responsive structural reorganizations play an important role in biological processes, often in combination with kinetic control scenarios. In supramolecular mimics of such systems, light has been established as the perfect external trigger. Here, we report on the light‐driven structural rearrangement of a small, self‐assembled Pd3L6 ring based on photochromic dithienylethene (DTE) ligands into a rhombicuboctahedral Pd24L48 sphere measuring about 6.4 nm across. When the wavelength is changed, this interconversion can be fully reversed, as confirmed by NMR and UV/Vis spectroscopy as well as mass spectrometry. The sphere was visualized by AFM, TEM, and GISAXS measurements. Due to dissimilarities in the photoswitch conformations, the interconversion rates between the two assemblies are drastically different in the two directions.  相似文献   

11.
A BODIPY‐based bis(3‐pyridyl) ligand undergoes self‐assembly upon coordination to tetravalent palladium(II) cations to form a Pd6L12 metallosupramolecular assembly with an unprecedented structural motif that resembles a rotaxane‐like cage‐in‐ring arrangement. In this assembly the ligand adopts two different conformations—a C‐shaped one to form a Pd2L4 cage which is located in the center of a Pd4L8 ring consisting of ligands in a W‐shaped conformation. This assembly is not mechanically interlocked in the sense of catenation but it is stabilized only by attractive π‐stacking between the peripheral BODIPY chromophores and the ligands’ skeleton as well as attractive van der Waals interactions between the long alkoxy chains. As a result, the co‐arrangement of the two components leads to a very efficient space filling. The overall structure can be described as a rotaxane‐like assembly with a metallosupramolecular cage forming the axle in a metallosupramolecular ring. This unique structural motif could be characterized via ESI mass spectrometry, NMR spectroscopy, and X‐ray crystallography.  相似文献   

12.
This work demonstrates a new nonconventional ligand design, imidazole/pyridine‐based nonsymmetrical ditopic ligands ( 1 and 1 S ), to construct a dynamic open coordination cage from nonsymmetrical building blocks. Upon complex formation with Pd2+ at a 1:4 molar ratio, 1 and 1 S initially form mononuclear PdL4 complexes (Pd2+( 1 )4 and Pd2+( 1 S )4) without formation of a cage. The PdL4 complexes undergo a stoichiometrically controlled structural transition to Pd2L4 open cages ((Pd2+)2( 1 )4 and (Pd2+)2( 1 S )4) capable of anion binding, leading to turn‐on anion binding. The structural transitions between the Pd2L4 open cage and the PdL4 complex are reversible. Thus, stoichiometric addition (2 equiv) of free 1 S to the (Pd2+)2( 1 S )4 open cage holding a guest anion ((Pd2+)2( 1 S )4?G?) enables the structural transition to the Pd2+( 1 S )4 complex, which does not have a cage and thus causes the release of the guest anion (Pd2+( 1 S )4+G?).  相似文献   

13.
We report here a guest-reaction-induced mitosis-like host transformation from a known Pd4L2 cage 1 to a conjoined Pd6L3 twin-cage 2 featuring two separate cavities. The encapsulation of 1-hydroxymethyl-2-naphthol ( G1 ), a known ortho-quinone methide (o-QMs) precursor, within the hydrophobic cavity of cage 1 is found crucial to realize the cage to twin-cage conversion. Confined G1 molecules within the nanocavity undergo self-coupling dimerization reaction to form 2,2′-dihydroxy-1,1′-dinaphthylmethane ( G2 ) which then triggers the cage to twin-cage mitosis. The same conversion also proceeds, in a much faster rate, via the direct templation of G2 , confirming the induced-fit transformation mechanism. The structure of the ( G2 )2⊂ 2 host–guest complex has been established by X-ray crystallographic study, where cis- to trans- conformational switch on one bridging ligand is revealed.  相似文献   

14.
Spherical assemblies of the type [PdnL2n]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [PdnLnL′n]2n+, for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3CN)4](BF4)2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8L8L′8]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.  相似文献   

15.
Recently, porous organic cage crystals have become a real alternative to extended framework materials with high specific surface areas in the desolvated state. Although major progress in this area has been made, the resulting porous compounds are restricted to the microporous regime, owing to the relatively small molecular sizes of the cages, or the collapse of larger structures upon desolvation. Herein, we present the synthesis of a shape‐persistent cage compound by the reversible formation of 24 boronic ester units of 12 triptycene tetraol molecules and 8 triboronic acid molecules. The cage compound bears a cavity of a minimum inner diameter of 2.6 nm and a maximum inner diameter of 3.1 nm, as determined by single‐crystal X‐ray analysis. The porous molecular crystals could be activated for gas sorption by removing enclathrated solvent molecules, resulting in a mesoporous material with a very high specific surface area of 3758 m2 g?1 and a pore diameter of 2.3 nm, as measured by nitrogen gas sorption.  相似文献   

16.
Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine‐ and imidazole‐based donors have been used for self‐selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two‐component self‐assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non‐preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to PdII is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H‐bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10?5 to ca. 10?3 S cm?1) at ambient temperature under a relative humidity of circa 98 % with low activation energy.  相似文献   

17.
A series of isostructural supramolecular cages with a rhombic dodecahedron shape have been assembled with distinct metal-coordination lability (M8Pd6-MOC-16, M=Ru2+, Fe2+, Ni2+, Zn2+). The chirality transfer between metal centers generally imposes homochirality on individual cages to enable solvent-dependent spontaneous resolution of Δ8/Λ8−M8Pd6 enantiomers; however, their distinguishable stereochemical dynamics manifests differential chiral phenomena governed by the cage stability following the order Ru8Pd6 > Ni8Pd6 > Fe8Pd6 > Zn8Pd6. The highly labile Zn centers endow the Zn8Pd6 cage with conformational flexibility and deformation, enabling intrigue chiral-Δ8/Λ8−Zn8Pd6 to meso-Δ4Λ4−Zn8Pd6 transition induced by anions. The cage stabilization effect differs from inert Ru2+, metastable Fe2+/Ni2+, and labile Zn2+, resulting in different chiral-guest induction. Strikingly, solvent-mediated host–guest interactions have been revealed for Δ8/Λ8−(Ru/Ni/Fe)8Pd6 cages to discriminate the chiral recognition of the guests with opposite chirality. These results demonstrate a versatile procedure to control the stereochemistry of metal-organic cages based on the dynamic metal centers, thus providing guidance to maneuver cage chirality at a supramolecular level by virtue of the solvent, anion, and guest to benefit practical applications.  相似文献   

18.
The preparation of functionalized, heteroleptic PdxL2x coordination cages is desirable for catalytic and optoelectronic applications. Current rational design of these cages uses the angle between metal-binding (∠B) sites of the di(pyridyl)arene linker to predict the topology of homoleptic cages obtained via non-covalent chemistry. However, this model neglects the contributions of steric bulk between the pyridyl residues—a prerequisite for endohedrally functionalized cages, and fails to rationalize heteroleptic cages. We describe a classical mechanics (CM) approach to predict the topological outcomes of PdxL2x coordination cage formation with arbitrary linker combinations, accounting for the electronic effects of coordination and steric effects of linker structure. Initial validation of our CM method with reported homoleptic Pd12LFu24 (LFu = 2,5-bis(pyridyl)furan) assembly suggested the formation of a minor topology Pd15LFu30, identified experimentally by mass spectrometry. Application to heteroleptic cage systems employing mixtures of LFu (∠B = 127°) and its thiophene congener LTh (∠B = 149° ∠Bexp = 152.4°) enabled prediction of Pd12L24 and Pd24L48 coordination cages formation, reliably emulating experimental data. Finally, the topological outcome for exohedrally (LEx) and endohedrally (LEn) functionalized heteroleptic PdxL2x coordination cages were predicted to assess the effect of steric bulk on both topological outcomes and coordination cage yields, with comparisons drawn to experimental data.

A molecular mechanics approach enables the accurate prediction of polyhedral topology for homoleptic and heteroleptic palladium MxL2x coordination cages, allowing for new insight and design when considering endo- and exo-hedral functionalization.  相似文献   

19.
The simple combination of PdII with the tris‐monodentate ligand bis(pyridin‐3‐ylmethyl) pyridine‐3,5‐dicarboxylate, L , at ratios of 1:2 and 3:4 demonstrated the stoichiometrically controlled exclusive formation of the “spiro‐type” Pd1L2 macrocycle, 1 , and the quadruple‐stranded Pd3L4 cage, 2 , respectively. The architecture of 2 is elaborated with two compartments that can accommodate two units of fluoride, chloride, or bromide ions, one in each of the enclosures. However, the entry of iodide is altogether restricted. Complexes 1 and 2 are interconvertible under suitable conditions.  相似文献   

20.
In this work, 5, 10, 15, 20‐Tetra‐(4‐aminophenyl) porphyrin (TAPP) was used as gelator to prepare metal‐porphyrin porous coordination polymer (PCP) via solvothermal process, Soxhlet extraction and supercritical CO2 extraction. Firstly, the metal‐porphyrin organic gel (MOG) was prepared as intermediate with solvothermal method. The generation of gels is associated with many factors. When four acetates [Co(Ac)2?4H2O, Zn(Ac)2?2H2O, Mn(Ac)2?4H2O and Ni(Ac)2?7H2O] reacted with TAPP, only the reaction between Co(Ac)2?4H2O and TAPP could form desired metal‐porphyrin organic gel. The influences of solvent, concentration and anions were investigated in the gelation process. Secondly, the residual reactants and solvent molecules in MOG were removed through Soxhlet extraction and supercritical CO2 extraction. The Co‐PCP is an amorphous material with a hierarchical porous structure can effectively catalyze the oxidation of ethylbenzene and also exhibits a strong adsorptive capacity for the strong‐polar solvent molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号