首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N‐Alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra‐ and intermolecular hydrogen bonds that leads to cavitand‐like structures. Depending on the upper‐rim substituents, self‐inclusion was observed in solution and in the solid state. The self‐inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self‐included dimers spontaneously reorganize to 1:1 host–guest complexes. These host compounds show an interesting ability to bind a series of N‐alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C?O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl?) and ammonium (NH2+) cations of the hosts, and also through CH ??? π interactions between the hosts and guests. The self‐included and host–guest complexes were studied by single‐crystal X‐ray diffraction, NMR titration, and mass spectrometry.  相似文献   

2.
The capability of resorcinarenes to bind anions within the alkyl feet at the lower rim has been exploited as the starting point for developing a new cavitand able to engulf contact ion pairs of primary ammonium salts in chlorinated solvents with association constants (Kass) in the range of 103–104 M ?1. Methylene bridges were introduced into the upper rim to freeze the resorcinarene in the cone conformation with the four Hdown protons converging in the lower pocket, thereby maximizing the CH–anion interactions responsible for the anion binding. Four additional phosphate moieties were introduced into the lower rim in close proximity to the anionic site to provide hydrogen‐bonding‐acceptor P?O groups and promote cation complexation at the bottom of the cavitand. The binding ability of the synthesized ligands was analyzed by 1H NMR spectroscopy and, when possible, by isothermal titration calorimetry (ITC); the data were in agreement when complementary techniques were used.  相似文献   

3.
Two tetrabenzoimidazolium‐resorcinarene cavitands were prepared and used for the recognition of chloride, bromide, iodide, cyanide, nitrate, perchlorate, hexanoate, benzenesulfonate, and p‐toluenesulfonate. Binding affinities of the two cavitands were determined by 1H NMR titration and computational analysis. The observed spectral changes were related to specific interaction sites, which were supported by the computational studies. In the case of the C2?H tetrabenzoimidazolium‐resorcinarene, the recognition region of the inorganic anions and hexanoate was located at the rim of the cavitand, although chloride and bromide also interacted with the aromatic C?H bonds located between adjacent arms of the cavitand. By contrast, the recognition of the two anions with an aromatic ring (benzenesulfonate and p‐toluenesulfonate) results from encapsulation of the aromatic part of the anions inside the hydrophobic cavity of the host. In the case of the C2?Me tetrabenzoimizazolium‐resorcinarene receptor, the ability of the molecule to bind all inorganic anions and hexanoate was suppressed, but the receptor maintained its ability to strongly bind benzenesulfonate and p‐toluenesulfonate. This is interpreted in terms of suppression of the ability of the cavitand to form hydrogen bonds at the rim of the molecule due to replacement of the C2?H proton by a methyl group, while the hydrophobic pocket of the molecule maintains its binding abilities.  相似文献   

4.
N‐Alkyl ammonium resorcinarene salts (NARYs, Y=triflate, picrate, nitrate, trifluoroacetates and NARBr) as tetravalent receptors, are shown to have a strong affinity for chlorides. The high affinity for chlorides was confirmed from a multitude of exchange experiments in solution (NMR and UV/Vis), gas phase (mass spectrometry), and solid‐state (X‐ray crystallography). A new tetra‐iodide resorcinarene salt (NARI) was isolated and fully characterized from exchange experiments in the solid‐state. Competition experiments with a known monovalent bis‐urea receptor ( 5 ) with strong affinity for chloride, reveals these receptors to have a much higher affinity for the first two chlorides, a similar affinity as 5 for the third chloride, and lower affinity for the fourth chloride. The receptors affinity toward chloride follows the trend K1?K2?K3≈ 5 >K4, with Ka=5011 m ?1 for 5 in 9:1 CDCl3/[D6]DMSO.  相似文献   

5.
Hexagonal shape‐persistent macrocycles (SPMs) consisting of three pyridine and three phenol rings linked with acetylene bonds were developed as a preorganized host for saccharide recognition by push–pull‐type hydrogen bonding. Three tert‐butyl or 2,4,6‐triisopropylphenyl substituents were introduced on the host to suppress self‐aggregation by steric hindrance. In spite of the simple architecture, association constants Ka of the host with alkyl glycoside guests reached the order of 106 m ?1 on the basis of UV/Vis titration experiments. This glycoside recognition was much stronger than that in the cases of acyclic equivalent hosts because of the entropic advantage brought by preorganization of the hydrogen‐bonding sites. Solid–liquid extraction and liquid–liquid transport through a liquid membrane were demonstrated by using native saccharides, and much preference to mannose was observed.  相似文献   

6.
Molecular clip 1 remains monomeric in water and engages in host–guest recognition processes with suitable guests. We report the Ka values for 32 1? guest complexes measured by 1H NMR, UV/Vis, and fluorescence titrations. The cavity of 1 is shaped by aromatic surfaces of negative electrostatic potential and therefore displays high affinity and selectivity for planar and cationic aromatic guests that distinguishes it from CB[n] receptors that prefer aliphatic over aromatic guests. Electrostatic effects play a dominant role in the recognition process whereby ion–dipole interactions may occur between ammonium ions and the C=O groups of 1 , between the SO3? groups of 1 and pendant cationic groups on the guest, and within the cavity of 1 by cation–π interactions. Host 1 displays a high affinity toward dicationic guests with large planar aromatic surfaces (e.g. naphthalene diimide NDI+ and perylene diimide PDI+) and cationic dyes derived from acridine (e.g. methylene blue and azure A). The critical importance of cation–π interactions was ascertained by a comparison of analogous neutral and cationic guests (e.g. methylene violet vs. methylene blue; quinoline vs. N‐methylquinolinium; acridine vs. N‐methylacridinium; neutral red vs. neutral red H+) the affinities of which differ by up to 380‐fold. We demonstrate that the high affinity of 1 toward methylene blue (Ka=3.92×107 m ?1; Kd=25 nm ) allows for the selective sequestration and destaining of U87 cells stained with methylene blue.  相似文献   

7.
Versatile concave receptors with binding properties that can be controlled by external stimuli are rare. Herein, we report on a calix[6]crypturea ( 1 ) that features two different binding sites in close proximity, that is, a tris(2‐aminoethyl)amine (tren)‐based tris‐ureido cap that provides convergent hydrogen‐bond‐donor sites and a hydrophobic cavity suitable for the inclusion of organic guests. The binding properties of this heteroditopic receptor have been evaluated by NMR spectroscopic studies. Compound 1 behaves as a remarkably versatile host that strongly binds neutral molecules, anions, or contact ion pairs. Within each family of guests, compound 1 is able to discriminate between different guests with a high degree of selectivity. Indeed, neutral molecules that possess hydrogen‐bond donor and acceptor groups, chloride anions, and linear ammonium ions associated to F? or Cl? are particularly well recognized. In comparison with all the related receptors, compound 1 displays several unique features: 1) charged or neutral species are also recognized in polar or protic solvents, 2) thanks to the flexibility of the calixarene structure, induced‐fit processes allow the binding of large, biologically relevant ammonium salts such as neurotransmitters, and 3) the protonation of the basic cap leads to a positively charged receptor, 1? H+, which is reluctant to host anions and in which host properties are now governed by strong charge–dipole interactions with the guests. In other words, compound 1 presents an acid–base controllable tris‐ureido recognition site protected by a hydrophobic corridor that can select guests through induced‐fit processes. Thus, its versatile host properties can be allosterically controlled by protonation and selective guest‐switching processes are possible. To illustrate all these remarkable features, a sophisticated three‐pole supramolecular switch, based on the interconversion of host–guest systems displaying either charged or neutral guests, is described.  相似文献   

8.
Herein we report a D3h‐symmetric tail‐to‐tail bis‐calix[6]arene 3 featuring two divergent cavities triply connected by ureido linkages. This calix[6]tube was synthesized by a domino Staudinger/aza‐Wittig reaction followed by a macrocyclization reaction. This process also afforded a C2h‐symmetric isomer that represents a rare example of a self‐threaded rotaxane based on calix[6]arene subunits. The binding properties of 3 have been evaluated by NMR studies. Thus, bis‐calix[6]arene 3 is able to bind simultaneously two neutral ureido guests through an induced‐fit process. The guests are located in the cavities and are recognized through multiple hydrogen‐bonding interactions with the ureido bridges. Host 3 can also simultaneously bind multiple ions and is especially efficient for the complexation of organic ion triplets. The anion is recognized through hydrogen‐bonding interactions at the ureido binding site and is thus located between the two ammonium ions accommodated in the cavities. The resulting [1+1+2] quaternary complexes represent rare examples of cascade complexes with organic cations. These complexes are unique: 1) They are stable even in a markedly protic solvent, 2) the recognition of the ion triplets proceeds in a cooperative way through an induced‐fit process and with a high selectivity, linear cations and doubly charged anions being particularly well recognized, 3) the ions are bound as contact ion triplets thanks to the closeness of the three binding sites, 4) the cationic guests can be exchanged and thus mixed [1+1+1+1] complexes can be obtained, 5) the ureido linkers wrapped around the anion adopt a helical shape and the resulting chirality is sensed by the cations. In other words, bis‐calix[6]arene 3 presents a selective inner tunnel in which multiple guests such as organic ion triplets can be aligned in a cooperative way through induced‐fit processes.  相似文献   

9.
Herein, we investigate the influence of spacer length on the homoassociation and heteroassociation of end‐functionalized hydrogen‐bonding polymers based on poly(n‐butyl acrylate). Two monofunctional ureido‐pyrimidinone (UPy) end‐functionalized polymers were prepared by atom transfer radical polymerization using self‐complementary UPy‐functional initiators that differ in the spacer length between the multiple‐hydrogen‐bonding group and the chain initiation site. The self‐complementary binding strength (Kdim) of these end‐functionalized polymers was shown to depend critically on the spacer length as evident from 1H NMR and diffusion‐ordered spectroscopy. In addition, the heteroassociation strength of the end‐functionalized UPy polymers with end‐functionalized polymers containing the complementary 2,7‐diamido‐1,8‐naphthyridine (NaPy) hydrogen‐bond motif is also affected when the aliphatic spacer length is too short. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
4,6‐Bis(2‐hydroxyphenyl)‐2‐alkylpyrimidines with two anthryl or 9‐ethylnylanthryl substituents at the positions para to the OH groups prefer a U‐shaped conformation supported by two intramolecular OH ??? N hydrogen bonds in the solid state and in CDCl3 solution. The compound with a hexyl substituent on the pyrimidine group and two 9‐ethynylanthryl arms at the hydroxyphenyl groups forms a 1:1 complex with 2,4,7‐trinitrofluorenone. Its association constant Ka was estimated to be 2100 M ?1 at 298 K, which is larger than those of other molecular tweezers (Ka<1000 M ?1). DFT calculations suggested that the complex adopts a stable conformation supported by intramolecular hydrogen bonds among the OH groups and the pyrimidine ring as well as by intermolecular π–π interaction between the anthryl groups and 2,4,7‐trinitrofluorenone. Addition of nBu4NF to a solution of the molecular tweezers or their complexes causes the cleavage of one or two OH ??? N hydrogen bonds, formation of new O ??? HF hydrogen bonds, and changes in the molecular conformation. The resulting structure of the molecular tweezers contains nonparallel anthryl groups, which do not bind the guest molecule. Photochemical measurements on 4,6‐bis(2‐hydroxyphenyl)‐2‐methylpyrimidine with two anthryl substituents showed negligible luminescence (quantum yield ?<0.01), owing to photoinduced electron transfer of the molecule with a U‐shaped structure. However, the O‐hexylated compound exhibits emission from the anthryl groups with ?=0.39.  相似文献   

11.
A new molecular receptor ( 1 ) for ammonium recognition has been designed and constructed by using only carbon atoms. This molecular receptor can co‐exist in two different isoenergetic conformations but, upon complexation, the conformers are no longer isoenergetic, and a basket‐shaped conformation becomes clearly more stable. The pre‐organised tetrahedral structure of this basket‐shaped molecule favours the complexation of ammonium ions by N? H???π interactions with the four phenyl groups of the host. A similar behaviour is not observed in a similar, but less pre‐organised, reference molecule. ESI‐MS competition experiments show that 1 is able to bind NH4+ over K+ selectively. This is the first example of a neutral molecular receptor that shows a remarkable NH4+/K+ selectivity. DFT‐calculations provide insight into the nature of host–guest interactions of both 1? NH4+ and 1? K+ complexes as well as in the mechanism involved in multiple cation–π interactions and the influence of these interactions on the conformational stability and the selective binding of the host.  相似文献   

12.
Iodine (I2) acts as a bifunctional halogen‐bond donor connecting two macrocyclic molecules of the bowl‐shaped halogen‐bond acceptor, N‐cyclohexyl ammonium resorcinarene chloride 1 , to form the dimeric capsule [(1,4‐dioxane)3@ 1 2(I2)2]. The dimeric capsule is constructed solely through halogen bonds and has a single cavity (V=511 Å3) large enough to encapsulate three 1,4‐dioxane guest molecules.  相似文献   

13.
《化学:亚洲杂志》2017,12(19):2576-2582
Complexation between (O ‐methyl)6‐2,6‐helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base‐ and chloride‐ion‐responsive host–guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6‐helic[6]arene‐based [2]rotaxane was also synthesized from the condensation between the host–guest complex and isocyanate.  相似文献   

14.
Aromatic helical receptors P- 1 and P- 2 were slightly modified by aerobic oxidation to afford new receptors P- 7 and P- 8 with right-handed helical cavities. This subtle modification induced significant changes in the binding properties for chiral guests. Specifically, P- 1 was reported to bind d -tartaric acid (Ka=35500 M−1), used as a template, much strongly than l -tartaric acid (326 M−1). In contrast, its modified receptor P- 7 exhibited significantly reduced affinities for d -tartaric acid (3600 M−1) and l -tartaric acid (125 M−1). More dramatic changes in the affinities and selectivities were observed for P- 2 and P- 8 upon binding of polyol guests. P- 2 was determined to selectively bind d -sorbitol (52000 M−1) over analogous guests, but P- 8 showed no binding selectivity: d -sorbitol (1890 M−1), l -sorbitol (3330 M−1), d -arabitol (959 M−1), l -arabitol (4970 M−1) and xylitol (4960 M−1) in 5% (v/v) DMSO/CH2Cl2 at 25±1 °C. These results clearly demonstrate that even subtle post-modifications of synthetic receptors may significantly alter their binding affinities and selectivities, in particular for guests of long and flexible chains.  相似文献   

15.
The non‐covalent interactions of different upper‐rim‐substituted C2‐resorcinarenes with tetramethylammonium salts were analyzed in the gas phase in an Electrospray Ionization Fourier‐transform ion‐cyclotron‐resonance (ESI‐FTICR) mass spectrometer and by 1H NMR titrations. The order of binding strengths of the hosts towards the tetramethylammonium cation in the gas phase reflects the electronic nature of the substituents on the upper rim of the resorcinarene. In solution, however, a different trend with particularly high binding constants for halogenated resorcinarenes has been observed. This trend can be explained by a synergetic effect originating from the interaction of the halogenated resorcinarenes with the counter anions through hydrogen bonding. This study highlights the importance of weak interactions in recognition processes and points out the benefits of comparing the gas‐phase data with results obtained from solution experiments.  相似文献   

16.
A series of symmetrical tri‐ and tetrameric N‐ethyl‐ and N‐phenylurea‐functionalized cyclophanes have been prepared in nearly quantitative yields (86–99 %) from the corresponding tri‐ and tetraamino‐functionalized piperazine cyclophanes and ethyl or phenyl isocyanates. Their conformational and complexation properties have been studied by single‐crystal X‐ray diffraction, variable‐temperature NMR spectroscopy, and ESI‐MS analysis. The rigid 27‐membered trimeric cyclophane skeleton assisted by a seam of intramolecular hydrogen bonds results in a preorganized ditopic recognition site with an all‐syn conformation of the urea moieties that, complemented by a lipophilic cavity of the cyclophane, binds molecular and ionic guests as well as ion pairs. The all‐syn conformation persists in acidic conditions and the triprotonated triurea cyclophane binds an unprecedented anion pair, H2PO4????HPO42?, in the solid state. The tetra‐N‐ethylurea cyclophane is less rigid and demonstrates an induced‐fit recognition of diisopropyl ether in the solid state. The guest was encapsulated within the lipophilic interior of a quasicapsule, formed by intramolecular hydrogen‐bond‐driven folding of the 36‐membered cyclophane skeleton. In the gas phase, the essential role of the urea moieties in the binding was demonstrated by the formation of monomeric 1:1 complexes with K+, TMA+, and TMP+ as well as the ion‐pair complexes [KI+K]+, [TMABr+TMA]+ and [TMPBr+TMP]+. In the positive‐mode ESI‐MS analysis, ion‐pair binding was found to be more pronounced with the larger tetraurea cyclophanes. In the negative mode, owing to the large size of the binding site, a general binding preference towards larger anions, such as the iodide, over smaller anions, such as the fluoride, was observed.  相似文献   

17.
The synthesis of new hosts specifically designed for the recognition of neutral guests bearing donor-acceptor hydrogen bonding groups is described. These hosts are characterized by the presence of two distinct binding region in close proximity: the rigid π-donor cavity and the H-bond donor N-methylene-N′-phenylureido group inserted onto the upper rim of the calix[4]arene skeleton. The binding abilities of these receptors were investigated toward a series of neutral ditopic organic molecules in CDCl3 solution by 1H NMR spectroscopy. The results obtained show that rigidity of the calix[4]arene apolar cavity is the control element in determining efficiency. In fact, compared with the more rigid 2, host 10, where the rigidity of the cone structure is maintained by hydrogen bonding of the OH of the lower rim, a decrease of efficiency of almost one order of magnitude was observed. The cooperative effect of the two binding region of host 2 was verified with different classes of ditopic guests. Good efficiency in the recognition of urea derivatives and dimethylsulfoxide was achieved.  相似文献   

18.
Modern supramolecular chemistry is overwhelmingly based on non‐covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non‐carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host–guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host–guest chemistry of the pentameric macrocycle [{P(μ‐NtBu}2NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO? anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV. Our study underscores the future promise of p‐block macrocyclic chemistry.  相似文献   

19.
Ropinirole hydro­chloride, or diethyl[2‐(2‐oxo‐2,3‐dihydro‐1H‐indol‐4‐yl)ethyl]ammonium chloride, C16H25N2O+·Cl, belongs to a class of new non‐ergoline dopamine agonists which bind specifically to D2‐like receptors with a selectivity similar to that of dopamine (D3 > D2 > D4). The N atom in the ethyl­amine side chain is protonated and there is a hydrogen bond between it and the Cl ion. In the crystal structure, two cations and two anions form inversion‐related cyclic dimers via N—H⋯Cl hydrogen bonds.  相似文献   

20.
Glassy carbon electrodes are modified with a thin film of a cellulose‐chitosan nanocomposite. Cellulose nanofibrils (of ca. 4 nm diameter and 250 nm length) are employed as an inert backbone and chitosan (poly‐D ‐glucosamine, low molecular weight, 75–85% deacetylated) is introduced as a structural binder and “receptor” or molecular binding site. The composite films are formed in a solvent evaporation method and prepared in approximately 0.8 μm thickness. The adsorption of three molecular systems into the cellulose‐chitosan films is investigated and approximate Langmuirian binding constants are evaluated: i) Fe(CN)64? (KFerrocyanide=2.2×103 mol?1 dm3 in 0.1 M phosphate buffer at pH 6) is observed to bind to ammonium chitosan functionalities (present at pH<7), ii) triclosan (KTriclosan=2.6×103 mol?1 dm3 in 0.1 M phosphate buffer pH 9.5) is shown to bind only weakly and under alkaline conditions, and iii) the anionic surfactant dodecylsulfate (KSDS=3.3×104 mol?1 dm3 in 0.1 M phosphate buffer pH 6) is shown to bind relatively more strongly in acidic media. The competitive binding of Fe(CN)64? and dodecylsulfate anions is proposed as a way to accumulate and indirectly determine the anionic surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号