首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mononuclear‐cobalt(II)‐substituted silicotungstate, K10[Co(H2O)2(γ‐SiW10O35)2] ? 23 H2O (POM‐ 1 ), has been evaluated as a light‐driven water‐oxidation catalyst. With in situ photogenerated [Ru(bpy)3]3+ (bpy=2,2′‐bipyridine) as the oxidant, quite high catalytic turnover number (TON; 313), turnover frequency (TOF; 3.2 s?1), and quantum yield (ΦQY; 27 %) for oxygen evolution at pH 9.0 were acquired. Comparison experiments with its structural analogues, namely [Ni(H2O)2(γ‐SiW10O35)2]10? (POM‐ 2 ) and [Mn(H2O)2(γ‐SiW10O35)2]10? (POM‐ 3 ), gave the conclusion that the cobalt center in POM‐ 1 is the active site. The hydrolytic stability of the title polyoxometalate (POM) was confirmed by extensive experiments, including UV/Vis spectroscopy, linear sweep voltammetry (LSV), and cathodic adsorption stripping analysis (CASA). As the [Ru(bpy)3]2+/visible light/sodium persulfate system was introduced, a POM–photosensitizer complex formed within minutes before visible‐light irradiation. It was demonstrated that this complex functioned as the active species, which remained intact after the oxygen‐evolution reaction. Multiple experimental parameters were investigated and the catalytic activity was also compared with the well‐studied POM‐based water‐oxidation catalysts (i.e., [Co4(H2O)2(α‐PW9O34)2]10? (Co4‐POM) and [CoIIICoII(H2O)W11O39]7? (Co2‐POM)) under optimum conditions.  相似文献   

2.
《化学:亚洲杂志》2017,12(17):2304-2310
A dinuclear ruthenium complex [RuII(NCNHC O)(pic)2]22+ ( 2 ) was firstly prepared and characterized spectroscopically and electrochemically. Instead of the conventional ligand exchange, complex 2 dissociates in situ to afford two single‐site Ru aqua complexes, [RuII(OH2)(NCNHC O)(pic)2]+, which mediates water oxidation through proton‐coupled electron transfer events. In electrokinetic studies, complex 2 demonstrated a TOF of 150.3 s−1 comparable to those state‐of‐the‐art catalysts at neutral conditions. TONs of 2173 and 217 were attained in chemical and photochemical water oxidation when 2 was used as a catalyst, exhibiting good stability. Notably, a TOF of 1.3 s−1 was achieved at CAN‐driven water oxidation, which outperformed most of the reported single‐site Ru complexes, indicating that complex 2 is one of most active water oxidation catalysts (WOCs) to date. The unique coordination configuration and outstanding catalytic performance of complex 2 might shed light on the design of novel molecular WOCs.  相似文献   

3.
Reversible proton‐ and electron‐transfer steps are crucial for various chemical transformations. The electron‐reservoir behavior of redox non‐innocent ligands and the proton‐reservoir behavior of chemically non‐innocent ligands can be cooperatively utilized for substrate bond activation. Although site‐decoupled proton‐ and electron‐transfer steps are often found in enzymatic systems, generating model metal complexes with these properties remains challenging. To tackle this issue, we present herein complexes [(cod?H)M(μ‐L2?) M (cod?H)] (M=PtII, [ 1 ] or PdII, [ 2 ], cod=1,5‐cyclooctadiene, H2L=2,5‐di‐[2,6‐(diisopropyl)anilino]‐1,4‐benzoquinone), in which cod acts as a proton reservoir, and L2? as an electron reservoir. Protonation of [ 2 ] leads to an unusual tetranuclear complex. However, [ 1 ] can be stepwise reversibly protonated with up to two protons on the cod?H ligands, and the protonated forms can be stepwise reversibly reduced with up to two electrons on the L2? ligand. The doubly protonated form of [ 1 ] is also shown to react with OMe? leading to an activation of the cod ligands. The site‐decoupled proton and electron reservoir sources work in tandem in a three‐way cooperative process that results in the transfer of two electrons and two protons to a substrate leading to its double reduction and protonation. These results will possibly provide new insights into developing catalysts for multiple proton‐ and electron‐transfer reactions by using metal complexes of non‐innocent ligands.  相似文献   

4.
Non‐aqueous Li–O2 batteries are promising for next‐generation energy storage. New battery chemistries based on LiOH, rather than Li2O2, have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru‐catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e oxygen reduction reaction, the H in LiOH coming solely from added H2O and the O from both O2 and H2O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li2O2, LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long‐lived battery. An optimized metal‐catalyst–electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals.  相似文献   

5.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

6.
A novel mononuclear cobalt complex 1 was synthesized by treatment of CoCl2·6H2O with a COOMe functionalized TPA ligand (TPA=tris(2‐pyridylmethyl)amine). In a basic borate buffer, 1 acts as an efficient catalyst for water oxidation, which is confirmed by an extinct catalytic oxidant wave in electrochemistry. Visible light‐driven water oxidation has been achieved by 1 with a TON of 127.7 and a TOF of 3.8 s?1 respectively in a homogeneous system. In comparison to the reference RC with naked TPA, the higher efficiency of 1 evidences COOMe on ligand can improve the catalytic efficiency, leading to an effective pathway towards construction of a robust and stable artificial photosynthesis system.  相似文献   

7.
A non‐innocent ligand, H4L, was synthesized by introducing a ? CH2NH2 group at the ortho carbon atom to the aniline moiety of 2‐anilino‐4,6‐di‐tert‐butylphenol. The new ligand was characterized by IR and NMR spectroscopy and mass spectrometry techniques. Upon treatment with CuCl2 ? 2 H2O, this non‐innocent ligand provided a mononuclear four‐coordinate salen‐type CuII complex by complete modification of the ligand backbone. The complex was characterized by IR spectroscopy, mass spectrometry, X‐ray single‐crystal diffraction, electron paramagnetic resonance (EPR) spectroscopy, and UV/Vis/near‐IR spectroscopy techniques. X‐ray crystallographic analysis showed an asymmetric environment around the CuII center with a small (≈12°) twist between the two biting planes. Analysis of the X‐band EPR spectrum also supported the asymmetric environment and also indicated the presence of an unpaired electron on the d orbital. The UV/Vis/near‐IR spectrum showed strong absorption bands for metal‐to‐ligand charge transfer and ligand‐to‐metal charge transfer along with a CuII‐centered d–d transition. Mechanistic investigation of the formation of complex 1 indicated that modification of the ligand backbone proceeded through ligand‐centered amine to imine oxidation as well as through C? N bond‐breaking processes. During these processes, 3,5‐di‐tert‐butyl‐1,2‐benzoquinone and 2‐aminobenzylidene were produced. Ammonia, generated in situ through hydrolysis of the imine to the aldehyde, reacted with 3,5‐di‐tert‐butyl‐1,2‐benzoquinone to form the corresponding 3,5‐di‐tert‐butyl‐1,2‐iminobenzoquinone moiety, which upon two‐electron reduction in the reaction medium formed 3,5‐di‐tert‐butyl‐1,2‐aminophenol. This aminophenol underwent condensation with the H2L5 ligand that was formed by self‐condensation of two molecules of 2‐aminobenzaldehyde and provided the modified ligand backbone.  相似文献   

8.
The catalytic reactivity of the high‐spin MnII pyridinophane complexes [(Py2NR2)Mn(H2O)2]2+ (R=H, Me, tBu) toward O2 formation is reported. With small macrocycle N‐substituents (R=H, Me), the complexes catalytically disproportionate H2O2 in aqueous solution; with a bulky substituent (R=tBu), this catalytic reaction is shut down, but the complex becomes active for aqueous electrocatalytic H2O oxidation. Control experiments are in support of a homogeneous molecular catalyst and preliminary mechanistic studies suggest that the catalyst is mononuclear. This ligand‐controlled switch in catalytic reactivity has implications for the design of new manganese‐based water oxidation catalysts.  相似文献   

9.
The title complex, {[Cd(C8H11O4)2(C10H8N2)(H2O)]·H2O}n, consists of linear chains formed through 4,4′‐bipyridine ligands linking seven‐coordinated CdII ions. Each CdII ion is in a distorted penta­gonal–bipyramidal environment, coordinated by one water ligand, two 4‐carboxy­cyclo­hexane‐1‐carboxyl­ate ligands and one bridging 4,4′‐bipyridine ligand to generate linear chains. The water mol­ecules and the Cd atom on one side, and the 4,4′‐bipyridine unit on the other, are bisected by two sets of twofold axes. The carboxylate group of the 4‐carboxy­cyclo­hexane‐1‐carboxyl ligand chelates a CdII ion, while the (protonated) carboxyl group forms hydrogen bonds with adjacent chains, resulting in a layered structure. This is the first reported occurrence of a dicarboxycyclo­hexane ligand exhibiting a non‐bridging coordination mode.  相似文献   

10.
Rational molecular design of catalytic systems capable of smooth O? O bond formation is critical to the development of efficient catalysts for water oxidation. A new ruthenium complex was developed, which bears pendant SO3? groups in the secondary coordination sphere: [Ru(terpy)(bpyms)(OH2)] (terpy=2,2′:6′,2′′‐terpyridine, bpyms=2,2′‐bipyridine‐5,5′‐bis(methanesulfonate)). Water oxidation driven by a Ce4+ oxidant is distinctly accelerated upon introduction of the pendant SO3? groups in comparisons to the parent catalyst, [Ru(terpy)(bpy)(OH2)]2+ (bpy=2,2′‐bipyridine). Spectroscopic, electrochemical, and crystallographic investigations concluded that the pendant SO3? groups promote the formation of an O? O bond via the secondary coordination sphere on the catalyst, whereas the influence of the pendant SO3? groups on the electronic structure of the [Ru(terpy)(bpy)(OH2)]2+ core is negligible. The results of this work indicate that modification of the secondary coordination sphere is a valuable strategy for the design of water oxidation catalysts.  相似文献   

11.
The title complex, {[Zn(C8H3NO6)(H2O)3]·H2O}n, has a one‐dimensional chain structure. The two carboxylate groups of the dianionic 2‐nitroterephthalate ligand adopt mono‐ and bidentate chelating modes. The Zn atom shows distorted octahedral coordination, bonded to three O atoms from two carboxylate groups and three O atoms of three non‐equivalent coordinated water molecules. The one‐dimensional chains are aggregated into two‐dimensional layers through inter‐chain hydrogen bonding. The whole three‐dimensional structure is further stabilized by inter‐layer hydrogen bonds.  相似文献   

12.
The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O?O bond. However, most of them function in a mixture of organic solvent and water and the O?O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru‐bda (H2bda=2,2′‐bipyridine‐6,6′‐dicarboxylic acid) water oxidation catalysts (WOCs) of formula [RuII(bda)(4‐OTEG‐pyridine)2] ( 1 , OTEG=OCH2CH2OCH2CH2OCH3) and [RuII(bda)(PySO3Na)2] ( 2 , PySO3?=pyridine‐3‐sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self‐assemble in water and form the O?O bond through different routes even though they have the same bda2? backbone. This work illustrates for the first time that the O?O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level.  相似文献   

13.
Manganese(V)–oxo–porphyrins are produced by the electron‐transfer oxidation of manganese–porphyrins with tris(2,2′‐bipyridine)ruthenium(III) ([Ru(bpy)3]3+; 2 equiv) in acetonitrile (CH3CN) containing water. The rate constants of the electron‐transfer oxidation of manganese–porphyrins have been determined and evaluated in light of the Marcus theory of electron transfer. Addition of [Ru(bpy)3]3+ to a solution of olefins (styrene and cyclohexene) in CH3CN containing water in the presence of a catalytic amount of manganese–porphyrins afforded epoxides, diols, and aldehydes efficiently. Epoxides were converted to the corresponding diols by hydrolysis, and were further oxidized to the corresponding aldehydes. The turnover numbers vary significantly depending on the type of manganese–porphyrin used owing to the difference in their oxidation potentials and the steric bulkiness of the ligand. Ethylbenzene was also oxidized to 1‐phenylethanol using manganese–porphyrins as electron‐transfer catalysts. The oxygen source in the substrate oxygenation was confirmed to be water by using 18O‐labeled water. The rate constant of the reaction of the manganese(V)–oxo species with cyclohexene was determined directly under single‐turnover conditions by monitoring the increase in absorbance attributable to the manganese(III) species produced in the reaction with cyclohexene. It has been shown that the rate‐determining step in the catalytic electron‐transfer oxygenation of cyclohexene is electron transfer from [Ru(bpy)3]3+ to the manganese–porphyrins.  相似文献   

14.
An easily synthesized water‐soluble ruthenium complex, [C6H5CH2N(CH3)2H]2[Ru(dipic)Cl3] (dipic =2,6‐pyridinedicarboxylate), as a catalyst showed high efficiency in the oxidation of alkanes and secondary alcohols to their corresponding ketones under solvent‐free and low‐catalyst‐loading conditions. This catalytic system could tolerate a variety of substrates and gave the corresponding ketones in good to excellent yields. The products were easily separated and purified due to the water solubility of the ruthenium complex.  相似文献   

15.
The selective oxidation of propylene with O2 to propylene oxide and acrolein is of great interest and importance. We report the crystal‐plane‐controlled selectivity of uniform capping‐ligand‐free Cu2O octahedra, cubes, and rhombic dodecahedra in catalyzing propylene oxidation with O2: Cu2O octahedra exposing {111} crystal planes are most selective for acrolein; Cu2O cubes exposing {100} crystal planes are most selective for CO2; Cu2O rhombic dodecahedra exposing {110} crystal planes are most selective for propylene oxide. One‐coordinated Cu on Cu2O(111), three‐coordinated O on Cu2O(110), and two‐coordinated O on Cu2O(100) were identified as the catalytically active sites for the production of acrolein, propylene oxide, and CO2, respectively. These results reveal that crystal‐plane engineering of oxide catalysts could be a useful strategy for developing selective catalysts and for gaining fundamental understanding of complex heterogeneous catalytic reactions at the molecular level.  相似文献   

16.
The title compound, [Ru(C6H6NO2)2(C15H11N3)(H2O)]·CH3CN·H2O, is a transfer hydrogenation catalyst supported by nitro­gen‐donor ligands. This octa­hedral RuII complex features rare monodentate coordination of 3‐meth­oxy‐2‐pyridonate ligands and inter­ligand S(6)S(6) hydrogen bonding. Comparison of the title complex with a structural analog with unsubstituted 2‐pyridonate ligands reveals subtle differences in the orientation of the ligand planes.  相似文献   

17.
The asymmetric unit of the title complex, {[Cu(C5H6O6P)2(H2O)2]·2H2O}n, consists of half a Cu atom, one complete 1‐oxo‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane‐4‐carboxylate anion ligand and two non‐equivalent water molecules. The Cu atom lies on a crystallographic inversion centre and has an elongated axially distorted octahedral environment. A two‐dimensional layer structure parallel to (100) is formed as a result of the connectivity brought about by each anion bonding to two different Cu atoms via a carboxylate O atom and a bridging O atom of a C—O—P group. The water molecules participate in extensive O—H...O hydrogen bonding. Neighbouring layers are linked together by intermolecular hydrogen‐bonding interactions. The crystal structure is characterized by intra‐ and interlayer motifs of a hydrogen‐bonded network. This study demonstrates the usefulness of carboxylates with caged phosphate esters in crystal engineering.  相似文献   

18.
The crystal structure of the title complex, (η6‐hexamethylbenzene)bis(trifluoromethanesulfonato‐O)(2,4,6‐trimethylanil­ine‐N)ruthenium(II), [Ru(CF3O3S)2(C12H18)(C9H13N)], is described. The complex has the classic three‐legged piano‐stool structure with a planar arene 1.667 Å from the metal, two monodentate O‐bound tri­fluoro­methane­sulfonate ligands [Ru—O 2.169 (2) and 2.174 (2) Å] and one N‐bound mesidine ligand [Ru—N 2.198 (2) Å]. The Ru—N distance is relatively long and the average Ru—O distance is relatively short when compared with previously characterized RuII complexes.  相似文献   

19.
The title copper complex, [Cu(dl ‐DAP)2(H2O)2]·2H2O or [Cu(C3H7N2O2)2(H2O)2]·2H2O, prepared from the non‐protein amino acid dl ‐2,3‐di­amino­propionic acid (dl ‐HDAP), has a center of symmetry and a distorted octahedral coordination, with four N atoms in equatorial positions and two water mol­ecules in apical sites. The water mol­ecule of crystallization is hydrogen bonded to the deprotonated carboxyl­ate group of the ligand.  相似文献   

20.
The ruthenium aqua complexes [Ru(H2O)2(bipy)2](OTf)2, [cis‐Ru(6,6′‐Cl2‐bipy)2(OH2)2](OTf)2, [Ru(H2O)2(phen)2](OTf)2, [Ru(H2O)3(2,2′:6′,2′′‐terpy)](OTf)2 and [Ru(H2O)3(Phterpy)](OTf)2 (bipy=2,2′‐bipyridine; OTf?=triflate; phen=phenanthroline; terpy= terpyridine; Phterpy=4′‐phenyl‐2,2′:6′,2′′‐terpyridine) are water‐ and acid‐stable catalysts for the hydrogenation of aldehydes and ketones in sulfolane solution. In the presence of HOS(O)2CF3 (triflic acid) as a dehydration co‐catalyst they directly convert 1,2‐hexanediol to n‐hexanol and hexane. The terpyridine complexes are stable and active as catalysts at temperatures ≥250 °C and in either aqueous sulfolane solution or pure water convert glycerol into n‐propanol and ultimately propane as the final reaction product in up to quantitative yield. For the terpy complexes the active catalyst is postulated to be a carbonyl species [(4′‐R‐2,2′:6′,2′′‐terpy)Ru(CO)(H2O)2](OTf)2 (R=H, Ph) formed by the decarbonylation of aldehydes (hexanal for 1,2‐hexanediol and 3‐hydroxypropanal for glycerol) generated in the reaction mixture through acid‐catalyzed dehydration. The structure of the dimeric complex [{(4′‐phenyl‐2,2′:6′,2′′‐terpy)Ru(CO)}2(μ‐OCH3)2](OTf)2 has been determined by single crystal X‐ray crystallography (Space group P (a=8.2532(17); b=12.858(3); c=14.363(3) Å; α=64.38(3); β=77.26(3); γ = 87.12(3)°, R=4.36 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号