首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
cis‐1,2‐Dimethylcyclobutane‐1,2‐diol, C6H12O2, crystallizes with five molecules in the asymmetric unit. Of these, two molecules are the building blocks of columns with a complex hydrogen‐bonding pattern in their hydrophilic core. The walls of the columns are formed by the lipophilic parts of the molecules. The remaining three molecules of the asymmetric unit build columns with a less complex hydrogen‐bonding system. In terms of co‐operativity, the most significant feature is the formation of homodromic rings of six hydroxy functions.  相似文献   

2.
By combining experimental measurements and computer simulations, we here show that for the bola‐like peptide amphiphiles XI4X, where X=K, R, and H, the hydrophilic amino acid substitutions have little effect on the β‐sheet hydrogen‐bonding between peptide backbones. Whereas all of the peptides self‐assemble into one dimensional (1D) nanostructures with completely different morphologies, that is, nanotubes and helical nanoribbons for KI4K, flat and multilayered nanoribbons for HI4H, and twisted and bilayered nanoribbons for RI4R. These different 1D morphologies can be explained by the distinct stacking degrees and modes of the three peptide β‐sheets along the x‐direction (width) and the z‐direction (height), which microscopically originate from the hydrogen‐bonding ability of the sheets to solvent molecules and the pairing of hydrophilic amino acid side chains between β‐sheet monolayers through stacking interactions and hydrogen bonding. These different 1D nanostructures have distinct surface chemistry and functions, with great potential in various applications exploiting the respective properties of these hydrophilic amino acids.  相似文献   

3.
Two polymorphs of 2,6‐dichloropurine, C5H2Cl2N4, have been crystallized and identified as the 9H‐ and 7H‐tautomers. Despite differences in the space group and number of symmetry‐independent molecules, they exhibit similar hydrogen‐bonding motifs. Both crystal structures are stabilized by intermolecular N—H...N interactions that link adjacent molecules into linear chains, and by some nonbonding contacts of the C—Cl...π type and by π–π stacking interactions, giving rise to a crossed two‐dimensional herringbone packing motif. The main structural difference between the two polymorphs is the different role of the molecules in the π–π stacking interactions.  相似文献   

4.
Approaches to control the self‐assembly of aromatic structures to enhance intermolecular electronic coupling are the key to the development of new electronic and photonic materials. Acenes in particular have proven simple to functionalize to induce strong π‐stacking interactions, although finer control of intermolecular π‐overlap has proven more difficult to accomplish. In this report, we describe how very weak hydrogen bonding interactions can exert profound impact on solid‐state order in solubilized pentacenes, inducing self‐assembly in either head‐to‐tail motifs with strong 2‐D π‐stacking, or head‐to‐head orientations with much weaker, 1‐D π‐stacking arrangements. In order to achieve 3‐D π‐stacking useful for photovoltaic applications, we elaborated a series of diethynyl pentacenes to their trimeric dehydro[18]annulene forms. These large, strongly interacting structures did indeed behave as acceptors in polymer photovoltaic devices.  相似文献   

5.
The title compound, C17H13ClN4O2, displays profound and selective activity against Mycobacterium tuberculosis. In the crystal structure, there are two independent molecules in the asymmetric unit. Intermolecular hydrogen bonding between a CH group of the purine ring and the O atom of the furan ring, and also π–π stacking in another direction, builds the three‐dimensional network.  相似文献   

6.
The asymmetric unit of the title compound, C6H5N3O, consists of discrete molecules of 9‐deazahypoxanthine [systematic name: 3H‐pyrrolo[3,2‐d]pyrimidin‐4(5H)‐one]. The structure displays N—H...O hydrogen bonding, connecting the molecules into centrosymmetric dimers. These dimers are then connected by N—H...N hydrogen bonds into a ladder‐like chain along the c axis. The secondary structure is stabilized by weak noncovalent contacts of the C—H...O and C—H...C types, as well as by π–π stacking interactions, which organize the structure into a zigzag architecture.  相似文献   

7.
The structure of 2,3,6,7,10,11‐hexahydroxytriphenylene (hhtp) methanol monosolvate, C18H12O6·CH3OH, has triclinic symmetry (space group P). The compound has a three‐dimensional layered network structure formed by intermolecular hydrogen bonding. Structure analysis with Hirshfeld surfaces is shown to be a sensitive method for comparing π‐stacking effects in the five known solvates of hhtp. The title structure shows slightly weaker π‐stacking than the dihydrate, but stronger π‐stacking than the other three solvates.  相似文献   

8.
In the title compound, 2C19H13N5·C8H6O4·4H2O, the terephthalic acid molecule lies on a crystallographic inversion centre and the H atoms of one water molecule exhibit disorder. The maximum deviation of any atom from the mean plane through the C and N atoms of the 2,6‐bis(benzimidazol‐2‐yl)pyridine molecule is only 0.161 (4) Å. In the crystal structure, the water molecules play an important role in linking the other molecules via hydrogen bonding. The structure forms a three‐dimensional framework via strong intermolecular hydrogen bonding. In addition, there are π–π stacking interactions between the imidazole, pyridine and benzene rings.  相似文献   

9.
Herein, we describe the role of end functional groups in the self‐assembly of amide‐functionalized oligo(p‐phenylenevinylene) (OPV) gelators with different end‐groups. The interplay between hydrogen‐bonding and π‐stacking interactions was controlled by the bulkiness of the end functional groups, thereby resulting in aggregates of different types, which led to the gelation of a wide range of solvents. The variable‐temperature UV/Vis absorption and fluorescence spectroscopic features of gelators with small end‐groups revealed the formation of 1D H‐type aggregates in CHCl3. However, under fast cooling in toluene, 1D H‐type aggregates were formed, whereas slow cooling resulted in 2D H‐type aggregates. OPV amide with bulky dendritic end‐group formed hydrogen‐bonded random aggregates in toluene and a morphology transition from vesicles into fibrous aggregates was observed in THF. Interestingly, the presence of bulky end‐group enhanced fluorescence in the xerogel state and aggregation in polar solvents. The difference between the aggregation properties of OPV amides with small and bulky end‐groups allowed the preparation of self‐assembled structures with distinct morphological and optical features.  相似文献   

10.
Self‐assembled nanostructures of rod‐like molecules are commonly limited to nematic or layered smectic structures dominated by the parallel arrangement of the rod‐like components. Distinct self‐assembly behavior of four categories of dendritic rods constructed by placing a tri(hydroxy) group at the apex of dendritic oligo‐fluorenes is observed. Designed hydrogen bonding and dendritic architecture break the parallel arrangement of the rods, resulting in molecules with specific (fan‐like or cone‐like) shapes. While the fan‐shaped molecules tend to form hexagonal packing cylindrical phases, the cone‐shaped molecules could form spherical motifs to pack into various ordered structures, including the Frank–Kasper A15 phase and dodecagonal quasicrystal. This study provides a model system to engineer diverse supramolecular structures by rod‐like molecules and sheds new light into the mechanisms of the formation of unconventional spherical packing structures in soft matter.  相似文献   

11.
The title compound, C19H21N3O4S, crystallizes in the space group P2/c with two molecules in the asymmetric unit. The conformation of both molecules is very similar and is mainly determined by an intramolecular N—H...O hydrogen bond between a urea N atom and a sulfonyl O atom. The O and second N atom of the urea groups are involved in dimer formation via N—H...O hydrogen bonds. The intramolecular hydrogen‐bonding motif and conformation of the C—SO2—NH(C=O)—NH—C fragment are explored and compared using the Cambridge Structural Database and theoretical calculations. The crystal packing is characterized by π–π stacking between the 5‐cyanobenzene rings.  相似文献   

12.
The title compounds 6 and 7 were synthesized in good yield (Schemes 1 and 2), and their mode of assembly was studied both in solution, for the tetrakis(decyloxy) derivative 6 , and in the crystal, for the tetramethoxy analogue 7 . The pyrimidin‐2‐amine moieties of 6 and 7 can engage in three different supramolecular interactions: i) metal ligation via one of the pyrimidine N‐atoms, ii) cooperative double H‐bonding via the NH2 group, and iii) π–π‐stacking interactions. In solution, coordination of the central Zn‐atom within the soluble porphyrinatozinc complex 19 leads to significant changes in the NMR and absorption spectra of 6 . In the absence of metal ligation, the next strongest interaction is H‐bonding which can operate in nonpolar or moderately polar solvents. In these cases, however, no stacking interaction or inclusion compounds could be put into evidence in the case of 6 by absorption, fluorescence, or NMR spectroscopies. The π‐stacking interactions were only observed in the crystal of 7 in conjunction with double H‐bonding. Slightly disordered DMSO molecules are also H‐bonded to the NH2 groups of 7 , perturbing the expected packing. The present study illustrates some of the challenges inherent to directing hierarchical assembly processes in the solid state.  相似文献   

13.
The molecules of the title compound, C34H24N2S4, lie across centres of inversion in the space group P21/n. The spacer unit linking the benzene rings and carbazole units is effectively planar, while the carbazole unit itself is slightly folded. Molecules are linked into sheets by a single C—H...π(arene) hydrogen bond and the hydrogen‐bonded sheets are themselves linked into a three‐dimensional framework structure by a single π–π stacking interaction.  相似文献   

14.
Linear‐dendritic block copolymer hosts were synthesized by end‐functionalizing poly(methylmethacrylate) with dendrons that acted as hydrogen‐bonding acceptors for nonlinear optical chromophores. Second harmonic generation experiments indicate that the d33 coefficients and maximum chromophore loading are increased in linear‐dendritic block copolymer hosts over comparable homopolymer hosts. Transmission electron microscopy shows 5–10 nm chromophore domains, confirming the effective spatial dispersion of the chromophores. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5017–5026, 2009  相似文献   

15.
The intermolecular interactions in the dimers of m‐nisoldipine polymorphism were studied by B3LYP calculations and quantum theory of "atoms in molecules" (QTAIM) studies. Four geometries of dimers were obtained: dimer I (a‐dimer, O···H? N), dimer II (b‐dimer, O···H? N), dimer III (b‐dimer, π‐stacking‐c), and dimer IV (b‐dimer, π‐stacking‐p). The interaction energies of the four dimers are along the sequence of II>I>III>IV. The intermolecular distance of the interactions follows the order: I (O···H? N)II>III>IV, and the electrostatic character decreases along the sequence: I>II>III>IV.  相似文献   

16.
The title zwitterion (2S)‐2‐azaniumyl‐1‐hydroxy‐3‐phenylpropan‐1‐olate, C9H11NO2, also known as L‐phenylalanine, was characterized using synchrotron X‐rays. It crystallized in the monoclinic space group P21 with four molecules in the asymmetric unit. The 0.62 Å resolution structure is assumed to be closely related to the fibrillar form of phenylalanine, as observed by electron microscopy and electron diffraction. The structure exists in a zwitterionic form in which π–π stacking and hydrogen‐bonding interactions are believed to form the basis of the self‐assembling properties.  相似文献   

17.
In O‐ethyl N‐benzoylthiocarbamate, C10H11NO2S, the molecules are linked into sheets by a combination of two‐centre N—H...O and C—H...S hydrogen bonds and a three‐centre C—H...(O,S) hydrogen bond. A combination of two‐centre N—H...O and C—H...O hydrogen bonds links the molecules of O‐ethyl N‐(4‐methylbenzoyl)thiocarbamate, C11H13NO2S, into chains of rings, which are linked into sheets by an aromatic π–π stacking interaction. In O,S‐diethyl N‐(4‐methylbenzoyl)imidothiocarbonate, C13H17NO2S, pairs of molecules are linked into centrosymmetric dimers by pairs of symmetry‐related C—H...π(arene) hydrogen bonds, while the molecules of O,S‐diethyl N‐(4‐chlorobenzoyl)imidothiocarbonate, C12H14ClNO2S, are linked by a single C—H...O hydrogen bond into simple chains, pairs of which are linked by an aromatic π–π stacking interaction to form a ladder‐type structure.  相似文献   

18.
A new class of coil–rod–coil molecules with an azobenzene core was synthesized. They were found to form robust organogels in several organic solvents. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), FTIR spectroscopy, UV/Vis absorption spectroscopy, 1H NMR spectroscopy, and X‐ray diffraction (XRD) revealed that in these organogels, the molecules self‐assembled into a nanofiber network with an H‐type aggregation mode under the joint effect of π–π stacking, intermolecular hydrogen bonding, and van der Waals forces. Interestingly, the incorporation of the azobenzene mesogene into the rigid core led to photoisomerizable liquid crystal materials, which exhibited quick responsiveness to light and temperature, along with the transcis transition stimulated by UV light and heating.  相似文献   

19.
Polymorph VI of 4‐amino‐N‐(2‐pyridyl)benzenesulfonamide, C11H11N3O2S, is monoclinic (space group P21/n). The asymmetric unit contains two different tautomeric forms. The structure displays N—H...N and N—H...O hydrogen bonding. The two independent molecules form two separate two‐ and three‐dimensional hydrogen‐bonded networks which interpenetrate. The observed patterns of hydrogen bonding are analogous to those in polymorph I of sulfathiazole.  相似文献   

20.
Introduction Optically active 1,1'-bi-2-naphthol (BINOL) and its derivatives have been widely used as chiral ligands of catalysts for asymmetric reactions and effective host compounds for the isolation or optical resolution of a wide range of organic guest molecules through the for-mation of crystalline inclusion complexes.1,2 The wide-ranging and important applications of these com-pounds in organic synthesis have stimulated great inter-est in developing efficient methods for their prepara-…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号