首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用高温浸渍法,通过Ce~(3+)、Ti~(4+)和浓硫酸磺化反应对多壁纳米碳管进行了改性处理,制备了Lewis酸型固体酸催化剂Ce~(3+)-Ti~(4+)-SO_4~(2-)/MWCNTs,并采用透射电镜、拉曼光谱、X射线光电子能谱、吡啶吸附红外光谱、X射线荧光光谱、X射线衍射光谱和NH_3程序升温脱附等多种测试技术对催化剂的物理化学特性和结构特征进行了表征。以Ce~(3+)-Ti~(4+)-SO_4~(2-)/MWCNTs为油酸与甲醇经酯化反应合成生物柴油的催化剂,对其催化性能进行了研究。结果表明,当醇油物质的量比为12∶1,催化剂与反应物质量比为1%,反应温度为65℃,反应5 h,油酸转化率为93.4%。催化剂Ce~(3+)-Ti~(4+)-SO_4~(2-)/MWCNTs在重复使用八次后,油酸的转化率仍为80.8%,由此表明其具有较高的催化活性和稳定性。高催化活性和稳定性是因为,纳米碳管的C 1s结合能较一般炭材料低,使得电子在其管状结构中的流动和逃逸非常容易,从而有助于负载于纳米碳管之上的活性组分之间发生强烈的相互作用,最终促使Ce~(3+)和Ti~(4+)分别与SO_4~(2-)形成稳定的配位键,增大催化剂的晶化程度,并使SO_4~(2-)与纳米碳管结合的更加牢固,增强了催化剂的稳定性,减少了催化剂中活性组分的流失。最后,由于SO_4~(2-)与Ce~(3+)的强相互作用,在不增加纳米碳管表面缺陷的情况下,改变了Ti~(4+)-SO_4~(2-)中表面原子的化学状态,使得S~(6+)离子和Ti~(4+)离子的吸电子能力增加,使催化剂以Lewis酸性活性位为主,避免了SO_4~(2-)/MWCNTs因为以Brnsted酸位为主,而在富含水的反应介质中,由于水合反应而降低其催化活性的现象发生。  相似文献   

2.
通过加载B_2O_3改性制备了新型固体酸SO_4~(2-)/B_2O_3/ZrO_2,利用XRD、FT-IR、BET和XPS对其进行了表征,并研究了它们对丙酸酯化反应的催化性能。系统考察了反应时间,催化剂用量和甲醇-丙酸的摩尔比对催化效果的影响,并对催化剂的重复使用性进行了研究。在较佳工艺条件:甲醇/丙酸摩尔比为20∶1、催化剂与反应物的质量比为2.8wt%、反应温度60℃、反应时间4h,丙酸转化率达94.99%。通过与未改性的SO_4~(2-)/ZrO_2比较,发现SO_4~(2-)/B_2O_3/ZrO_2具有比SO_4~(2-)/ZrO_2更大的比表面积、孔容,更高的活性,更好的重复利用性和更高的TOF值。  相似文献   

3.
采用沉淀法制备了Fe(OH)_3和Fe_2O_3。通过硫酸化处理得到SO_4~(2-)/Fe(OH)_3和SO_4~(2-)/Fe_2O_3两种催化剂,并将其应用于氨选择性催化还原NO_x(NH_3-SCR)反应,研究了SO_4~(2-)功能化处理对Fe_2O_3催化剂上NH_3-SCR脱硝性能的促进机理。结果表明,与纯的Fe_2O_3相比,硫酸化处理得到的催化剂上SCR活性得到显著提升;其中,SO_4~(2-)/Fe(OH)_3表现出更加优异的催化性能,在250-450℃时NO_x转化率高于80%,且具有优异的稳定性和抗H_2O+SO_2性能。XRD、Raman、TG、FT-IR、H_2-TPR、NH_3-TPD和in situ DRIFTS等表征结果显示,硫酸功能化处理能抑制Fe_2O_3的晶粒生长,同时SO_4~(2-)与Fe~(3+)结合形成硫酸盐复合物,提高了催化剂表面酸性位点的数量和酸强度,抑制了Fe_2O_3上的氨氧化反应,从而提高了其脱硝催化性能。  相似文献   

4.
分别用硫酸、硫酸铵作为前驱体,活性炭(AC)作为载体,采用浸渍法制备了SO_4~(2-)/AC双功能催化剂(SO_4~(2-)离子和AC载体分别提供催化剂的酸性和氧化还原性),考察了其在二甲醚(DME)直接氧化合成聚甲氧基二甲醚(DMMx)反应中的催化性能。结果表明,不同前驱体制备的SO_4~(2-)/AC催化剂表现出显著的催化活性差异。40%H_2SO_4/AC催化剂具有较好的反应活性,DME转化率为8.4%,DMM1-2的选择性达到59.7%,并且没有COx的生成;而在40%(NH_4)_2SO_4/AC催化剂上,反应主要生成了COx,DMM选择性仅2.7%,且无DMM2生成。XRD、BET、NH_3-TPD及O_2-TPD-MS等表征结果显示,H_2SO_4/AC催化剂中适量的弱酸性位和氧化还原性位有利于DME直接氧化合成DMMx。经过SO_4~(2-)修饰的催化剂促进了O2在活性炭表面的活化;前驱体H_2SO_4的加入提高了催化剂表面的弱酸性位数量,而(NH_4)_2SO_4的引入却促使催化剂表面产生中强酸性位。  相似文献   

5.
摘要:酸催化剂在化学反应和化工生产中具有重要的作用.传统无机酸,如H_2SO_4,H_3PO_4和对甲苯磺酸等具有较高的催化活性,但是存在污染大、设备腐蚀严重以及催化剂不能重复使用等问题.固体酸具有酸性强、易分离、环境友好以及稳定性和重复使用性好等特点因而近年来越来越引起人们的关注.其中,SO_4~(2-)-M_xO_y固体超强酸(如SO_4~(2-)-Zr O_2,SO_4~(2-)-Ti O_2和SO_4~(2-)-Sn O_2等)因具有很好的催化性能而备受关注.相比SO_4~(2-)-M_xO_y,S_2O_8~(2-)-M_xO_y具有更强的酸性和稳定性而成为研究的重点.如何克服固体超强酸本体的低比表面积和孔容,增加其比表面积和催化活性是固体超强酸研究的热点.超声吸附法可保证所制介孔固体酸活性组分均匀分散,以及大的比表面积和更多的酸性位点.因此采用超声吸附法制备了一种新型介孔固体酸S_2O_8~(2-)-Fe_2O_3/SBA-15.相比S_2O_8~(2-)-Fe_2O_3本体、B酸和文献报道催化剂,负载30%Fe_2O_3的S_2O_8~(2-)-Fe_2O_3/SBA-15在环氧苯乙烷甲醇醇解的探针反应中显示出很高的催化活性,反应收率为100%.S_2O_8~(2-)-Fe_2O_3纳米粒子的纳米效应和SBA-15介孔结构的协同作用使S_2O_8~(2-)-Fe_2O_3/SBA-15具有高催化活性.相比S_2O_8~(2-)-Fe_2O_3本体,采用超声分散技术制备的S_2O_8~(2-)-Fe_2O_3/SBA-15固体超强酸具有典型的介孔结构、大的比表面积和孔容,并且表面富含酸性位点.并且吡啶红外分析S_2O_8~(2-)-Fe_2O_3/SBA-15表面富含L酸和B酸.环氧苯乙烷甲醇醇解探针反应表明,Fe_2O_3负载量为30%时,S_2O_8~(2-)-Fe_2O_3/SBA-15的催化活性最高,优于S_2O_8~(2-)-Fe_2O_3本体和已报道的布朗酸和路易斯酸等催化剂,将醇底物拓展(ROHs,R=C_2H_5-C_4H_9),S_2O_8~(2-)-Fe_2O_3/SBA-15的催化活性也优于S_2O_8~(2-)-Fe_2O_3本体.同时,S_2O_8~(2-)-Fe_2O_3/SBA-15具有很好的重复使用性能,连续使用七次,反应收率在84.1%以上.总之,具有高催化活性、好的稳定性和经济性的S_2O_8~(2-)-Fe_2O_3/SBA-15具有广阔的应用前景.  相似文献   

6.
本文采用沉淀法合成了MnO_x和Fe_2O_3金属氧化物,进而经通过硫酸酸化处理,制备了SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3两种催化剂,并考察了其NH_3选择性催化还原(NH_3-SCR)氮氧化物的性能.研究发现,经硫酸酸化后,SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3的脱硝活性得到了显著提升.通过一系列表征证实,SO_4~(2-)可以和Fe_2O_3形成固体超强酸,从而显著提高Fe_2O_3的酸性,有利于吸附和稳定碱性还原剂NH_3;同时,MnO_x经酸化后,氧化性受到一定程度的抑制,有利于减少高温下氨氧化副反应的发生,从而改善MnO_x和Fe_2O_3的脱硝效果.本文还对改性后的SO_4~(2-)/MnO_x和SO_4~(2-)/Fe_2O_3进行组合,形成3种组合催化剂,发现组合催化可产生良好的协同效应,发挥了各自在低温和高温的脱硝优势,拓宽了高活性温度窗口(200~450℃;NO转化率90%),同时降低了副产物的生成,提高N_2的选择性.此外,将适宜于高温脱硝的SO_4~(2-)/Fe_2O_3放在前半段,而将适宜于低温脱硝的SO_4~(2-)/MnO_x放在后半段的组合方式,可获得最佳的脱硝效果,得到较高的N_2产率(80%,100~450℃),既有效地优化了Mn基催化剂的N_2选择性,又拓宽了Fe基催化剂的活性温窗.  相似文献   

7.
以十二磷钨杂多酸(Tungstophosphoric acid,H_3PW_(12)O_(40))为基体,分别通过普通浸渍法、溶胶凝胶法和超声浸渍法进行了La3+改性作用,合成了三种固体酸催化剂A-LaPW_(12)O_(40)、B-LaPW_(12)O_(40)/Si O2和C-LaPW_(12)O_(40)。采用X射线荧光光谱(XRF)、孔径比表面积测定、X射线粉末衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)、热重(TG)、N2吸附-脱附、NH3程序升温脱附(NH3-TPD)、吡啶吸附红外光谱(Py-FTIR)、X射线光电子能谱(XPS)等方法对合成的催化剂进行了表征,并比较了以上催化剂在用于催化以油酸和甲醇为反应物经酯化反应合成生物柴油时的活性和稳定性。结果表明,B-LaPW_(12)O_(40)/Si O2具有最高催化活性,当甲醇与油酸的物质的量比为8∶1,催化剂用量为反应物总质量的2%,反应温度为65℃,反应1 h后,油酸的转化率即高达93%。循环使用B-LaPW_(12)O_(40)/Si O2催化剂六次后,油酸的转化率仍高达86.4%。B-LaPW_(12)O_(40)/Si O2的高催化活性和稳定性可归因于在溶胶凝胶的转化过程中,作为硅源材料的四乙氧基硅(TEOS)易在酸性条件下发生水解反应形成Si O2网络,进而Si O2网络中的硅醇键与H_3PW_(12)O_(40)中的H+发生配位作用,生成具有强静电吸附力的(≡Si-OH2+)(H2PW12O-40)络合物。随着该络合物的形成,促进了La3+在Si O2表面的吸附而堵塞了H_3PW_(12)O_(40)的孔道结构,抑制了H_3PW_(12)O_(40)颗粒在焙烧过程中进一步聚集长大。Si O2将作为载体并以干凝胶状态存在于B-LaPW_(12)O_(40)/Si O2催化剂中,由于Si O2凝胶的高比表面积而使B-LaPW_(12)O_(40)/Si O2具有了较大的比表面积,从H_3PW_(12)O_(40)的1.4 m2/g增加至31.3 m2/g。并且,通过吡啶吸附红外光谱确定B-LaPW_(12)O_(40)/Si O2为Br9nsted-Lewis酸型固体酸,由于Br9nsted酸位易与酯化反应过程中生成的水发生水合反应而失活,因而Lewis酸位的形成有助于减少催化剂的失活现象发生。Lewis酸位的出现可归因于(≡Si-OH2+)(H2PW12O-40)与吸附在其表面的具有强吸电子作用的La3+发生键合作用后生成了LaPW_(12)O_(40)/Si O2。  相似文献   

8.
通过(NH4)2S2O8溶液浸渍法制备了S_2O_8~(2-)/ZnFe_xAl_(2-x)O_4固体催化剂。通过XRD、TG-DSC、IR和N_2吸附-脱附的分析方法对催化剂进行了表征,并考察了催化剂的制备条件。实验结果表明,S_2O_8~(2-)/ZnFe_xAl_(2-x)O_4-仍具有载体的尖晶石结构特征,BET表面积为37.65m~2/g,颗粒堆积后的平均孔径约为12.47nm。将S_2O_8~(2-)/ZnFe_xAl_(2-x)O_4应用于制备乙酸正丁酯的反应,研究表明,催化剂的催化活性与制备条件有关,当采用0.15mol/L(NH4)_2S_2O_8溶液浸渍ZnFe_(0.15)Al_(1.85)O_4,温度为550℃焙烧5h条件下制备的催化剂,可使乙酸的酯化率达到93.47%。  相似文献   

9.
通过高温浸渍法,对多壁纳米碳管进行了氟离子与浓硫酸磺化反应修饰改性处理,制备了一种新型Lewis酸型催化剂F~--SO_4~(2-)/MWCNTs,并通过透射电镜、拉曼光谱、X射线光电子能谱、吡啶吸附红外光谱、X射线荧光光谱、X射线衍射和NH_3程序升温脱附等表征手段对其的物理化学性能进行了表征分析,进而对多壁纳米碳管经F~-与浓硫酸磺化反应修饰改性后所出现的结构与催化性能变化的内在影响规律进行了探索。以F~--SO_4~(2-)/MWCNTs为催化剂,以甲醇和油酸为原料,对其在应用于催化酯化反应合成油酸甲酯过程中的活性进行了研究。结果表明:当反应温度为65℃、醇油物质的量之比为12∶1、催化剂质量占反应物总质量的0.9%、反应时间为6 h,油酸的转化率最高,达到了90%。高催化活性可归因于随着氟元素的加入,提高了SO_4~(2-)的插层作用效果,从而增加了酸性活性位的数量;此外,S=O键具有电子诱导效应,而F~-有强负电性,两者之间发生强烈的相互作用后形成了F~-S键,使S=O的吸电子效应大幅度增强,从而加剧了F~--SO_4~(2-)/MWCNTs催化剂的体系电荷不平衡趋势,导致催化剂中的正电荷过剩,使催化剂中的酸性活性位以Lewis酸为主,有效的避免了单纯磺化反应作用所生成的催化剂的酸性活性位以Br觟nsted酸型为主,而易在富含水的反应介质中发生水合作用而降低,甚至失去催化活性的现象发生。  相似文献   

10.
选择性催化还原(SCR)是目前去除氮氧化物最有效的方法之一.V_2O_5/TiO_2催化剂被广泛应用于氨法选择性还原氮氧化物(NH_3-SCR)反应,但该催化剂存在工作温度高(300–400℃)及SO_2氧化率高引起设备腐蚀和管路堵塞等问题,开发低温SCR催化剂具有重要意义.过渡金属氧化物(如Fe_2O_3,MnO_x和CuO等)催化剂用于低温SCR先后见诸文献报道,但这些催化剂在SO_2和H_2O存在下易失活.近年来柱撑黏土(PILC)引起科学家广泛关注,Yang等首次将V_2O_5/TiO_2-PILC催化剂应用于NH_3-SCR反应,发现其催化活性高于传统V_2O_5/TiO_2催化剂.柱撑黏土基催化剂在NH_3-SCR反应中也显示出良好抗硫性能,但V_2O_5/TiO_2-PILC催化剂的抗硫机理至今尚未见深入研究.因此我们制备了一系列V_2O_5/TiO_2-PILC催化剂,采用原位漫反射红外等方法详细研究了其抗硫性能较好的原因.首先采用离子交换法制备出TiO_2-PILC载体,之后采用浸渍法制备了不同钒含量(质量分数x/%=0,3,4,5)的xV_2O_5/TiO_2-PILC催化剂.同时,制备了传统V_2O_5/TiO_2和V2O5-MoO_3/TiO_2催化剂作为对比.活性评价结果显示,4V/TiO_2-PILC催化剂具有最高的催化活性,其催化性能与传统钒钛催化剂相当.在160℃时,NO转化率可达80%以上.同时,4V/TiO_2-PILC催化剂还具有较宽的反应温度窗口,在260–500℃范围内,NO转化率保持在90%以上.向反应体系中加入0.05%SO_2和10%H_2O后,在低温(160℃以下)时所有催化剂的反应活性都有一定提高,可能是由于SO_2的加入提高了催化剂的表面酸性.继续升高温度,4V/TiO_2和4V6Mo/TiO_2催化剂活性均明显下降,而4V/TiO_2-PILC催化剂的活性则未出现明显下降.原位漫反射红外光谱结果显示,SO_2在三种催化剂表面的吸附以表面硫酸盐或亚硫酸盐物种以及离子态SO_4~(2–)物种形式存在,而在4V/TiO_2-PILC催化剂表面离子态SO_4~(2–)物种的量最少.X射线光电子能谱及O_2程序升温脱附结果显示,在4V/TiO_2-PILC催化剂上,表面吸附氧(Oads)的量最少.综合上述分析可以得出,在SO_2气氛下,离子态SO_4~(2–)物种在SCR催化剂表面的累积可能是导致其失活的主要原因,而离子态SO_4~(2–)物种的形成可能与催化剂表面吸附氧的量有关.  相似文献   

11.
考察添加不同含量Cl离子对浸渍法制备的Cl-V_2O_5-WO_3/TiO_2催化剂低温NO转化率的影响。随着Cl离子质量添加量从0增加到2.5%,Cl-V_2O_5-WO_3/TiO_2催化剂NO转化率先升高后降低,结合在含有SO_2和H2O的SCR实验结果,确定1.5%Cl-V_2O_5-WO_3/TiO_2为性能最优催化剂。在反应温度为149-362℃,NO转化率大于95%;在145-385℃,NO转化率大于90%。采用XRF、BET、XRD、TG、FT-IR和H2-TPR等方法表征了催化剂的物理化学性能和结构。结果表明,在反应气氛中加入SO_2和H2O后,催化剂比表面积和孔容均减小,副反应产物含有NH+4和SO_2-4。适量Cl离子可以抑制硫物种沉积,减少副反应产物生成,增强催化剂抗中毒能力。  相似文献   

12.
In order to utilize the brine resources in China, the solid-liquid equilibria in quaternary system Li+, K+//SO42-, B4O72--H2O at 288 K was studied by the isothermal solution equilibrium method. Solubilities and densities of solutions were determined experimentally. According to the experimental data, the equilibrium phase diagrams, density-composition diagram and corresponding water content diagram of the quaternary system were plotted. Double salt KLiSO4 was found in the reciprocal quaternary system Li+, K+//SO42-, B4O72--H2O at 288 K. The quaternary system has three invariant points, seven univariant curves and five fields of crystallization. The five crystallization regions correspond to Li2B4O7·3H2O, Li2SO4·H2O, K2B4O7·4H2O, K2SO4 and KLiSO4, respectively. The crystallization field of salt Li2B4O7·3H2O is the largest, whereas that of Li2SO4·H2O is the smallest. The experimental results show that Li2SO4·H2O has a strong salting-out effect on other salts.  相似文献   

13.
高酸值生物柴油原料甘油酯化脱酸研究   总被引:4,自引:0,他引:4  
利用共沉淀-浸渍法制备了Al改性固体酸催化剂SO42-/ZrO2,考察了催化剂在甘油酯化脱酸制备生物柴油原料反应中的催化活性、重复利用性和再生性能,并对使用前后的催化剂进行了红外光谱分析。研究表明,添加适量Al(1%,以Al2O3的质量分数计)不但提高了催化剂的活性,还改善了催化剂的重复利用性和再生性能。添加Al使ZrO2上SO42-的量增加,SO42-结合强度增强,减少了在酯化脱酸反应过程中SO42-的流失。在SO42-/ZrO2-Al2O3催化剂用量为7%、甘油与酸物质的量比为6:1、反应温度为140 ℃、反应时间为4 h的条件下,酯化率可达91%以上,可将高酸值油脂的酸值从31 mgKOH/g降低到2.8 mgKOH/g以下,可满足生物柴油原料的要求。  相似文献   

14.
复杂水盐体系存在稳态和介稳固液相平衡以及复杂的成盐规律。为了解固液平衡状态下液相的结构特征,本文采用拉曼光谱技术并结合高斯-洛伦兹去卷积分峰拟合程序对Na+, Mg2+//SO42-, Cl-, H2O四元体系及其二元和三元子体系中ν1-SO42-的离子缔合结构特征进行了分析。研究结果表明:SO42-在Na2SO4-H2O体系存在自由态SO42-和SO42-离子簇两种结构,在MgSO4-H2O, MgSO4-MgCl2-H2O及Na+, Mg2+//SO42-, Cl-, H2O等含镁体系中,还有Mg2+-H2O-SO42-和Mg2+-OSO32-两种缔合结构。在二元和三元体系中ν1-SO42-的离子缔合结构以自由态SO42-为主,随着SO42-离子总浓度的变化,上述四种结构所占比例会发生规律性变化。Na+, Mg2+//SO42-, Cl-, H2O四元体系在NaCl减少及等温蒸发过程中,自由态SO42-结构比例逐步降低, Mg2+和SO42-相结合形成Mg2+-H2O-SO42-或Mg2+-OSO32-结构的机会增多,在复盐区还会形成SO42-离子簇结构。由此判断溶液结构的适应性变化是导致介稳现象的重要原因。进一步的相关分析表明:SO42-的浓度和耶涅克指数Jν1-SO42-峰的峰强度和峰面积存在正相关关系, Mg2+浓度是影响ν1-SO42-峰中四种缔合结构的比例发生变化的主要因素。  相似文献   

15.
以硝酸锆、硝酸铜和硝酸钴为金属源,过硫酸铵作为浸渍液,采用共沉淀浸渍法合成出固体超强酸催化剂S2O82-/ZrO2、S2O82-/ZrO2-CuO和S2O82-/ZrO2-CoO,通过XRD、FT-IR、NH3-TPD、BET对催化剂进行表征。结果表明,Co(钴)改性催化剂S2O82-/ZrO2-CoO在三种催化剂中超强酸位最多。将其作为催化剂,过氧化氢作为氧化剂用于FCC汽油氧化脱硫反应,研究不同反应温度、催化剂用量、反应时间、氧化剂用量对FCC汽油脱硫效果的影响。结果表明,FCC汽油氧化脱硫的最佳条件为:反应温度70 ℃,反应1.5 h,FCC汽油加入量与氧化剂体积比7.5:1,催化剂用量0.02 g/mL。反应产物利用N,N-二甲基甲酰胺进行萃取分离,萃取剂/汽油体积比为1:1时,FCC汽油脱硫率最高可达85.34%,回收率为94.45%,并且催化剂表现出较为稳定的催化活性。  相似文献   

16.
Chromium oxides supported on TiO2 showed good activity for the selective catalytic reduction of NO by NH3.The catalytic activity of Cr2O3-SO42-/TiO2 catalyst was greatly enhanced by the addition of SO42-into TiO2 support.The catalyst surface properties were characterized with NH3-TPD(temperature programmed desorption) and H2-TPR(temperature programmed reduction).The sulphate on the catalyst surface could enhance the acidity and redox of the catalyst obviously.The reaction mechanism on this catalyst was researched in detail by in situ diffuse reflectance Fourier transform infrared(FTIR) spectroscope.Eley-Rideal and Langmuir-Hinshelwood mechanism existed simultaneously for selective catalytic reduction(SCR) reaction of NO over Cr2O3-SO42-/TiO2 catalyst.  相似文献   

17.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号