首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Removal of uranium(VI) ions from acetate medium in aqueous solution was investigated using Lewatit TP260 (weakly acidic, macroporous-type ion exchange resin with chelating aminomethylphosphonic functional groups) in batch system. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The moving boundary particle diffusion model only fits the initial metal adsorption on the resin. The rate constant for the uranium sorption by Lewatit TP260 was 0.441 min−1 from the first order rate equation. The total sorption capacity was found to be 58.33 mg g−1 under optimum experimental conditions. Thermodynamic parameters (ΔH = 61.74 kJ/mol; ΔS = 215.3 J/mol K; ΔG = −2.856 kJ/mol) showed the adsorption of an endothermic process and spontaneous nature, respectively.  相似文献   

2.
The uranium(VI) accumulation was studied in detail by using the biomass of mangrove endophytic fungus Fusarium sp.#ZZF51 from the South China Sea. The uranium(VI) biosorption process onto the tested fungus powders was optimized at pH 4.0, adsorption time 60 min, and uranium(VI) initial concentration 50 mg L−1 with 61.89% of removal efficiency. According to Fourier transform infrared spectra for the tested fungus before and after loaded with uranium(VI), the results showed that both of hydroxyl and carboxyl groups acted as the important roles in the adsorption process. In addition, the experimental data were analyzed by using parameter and kinetic models, and it was obtained that the Langmuir isotherm model and the pseudo-second-order kinetic model provided better correlation with the experimental data for adsorption of uranium(VI).  相似文献   

3.
The uranium(VI) biosorption by grapefruit peel was studied from aqueous solutions. Batch experiments was conducted to evaluate the effect of contact time, initial uranium(VI) concentration, initial pH, adsorbent dose, salt concentration and temperature. The equilibrium process was well described by the Langmuir, Redlich–Peterson and Koble–Corrigan isotherm models, with maximum sorption capacity of 140.79 mg g−1 at 298 K. The pseudo second order model and Elovish model adequately describe the kinetic data in comparison to the pseudo first order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The effective diffusion parameter D i and D f values were estimated at different initial concentration and the average values were determined to be 1.167 × 10−7 and 4.078 × 10−8 cm2 s−1. Thermodynamic parameters showed that the biosorption of uranium(VI) onto grapefruit peel biomass was feasible, spontaneous and endothermic under studied conditions. The physical and chemical properties of the adsorbent were determined by SEM, TG-DSC, XRD and elemental analysis and the nature of biomass–uranium (VI) interactions was evaluated by FTIR analysis, which showed the participation of COOH, OH and NH2 groups in the biosorption process. Adsorbents could be regenerated using 0.05 mol L−1 HCl solution at least three cycles, with up to 80% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of uranium (VI) bearing aqueous solutions.  相似文献   

4.
5.
Biosorption of nickel ions from aqueous solutions by modified loquat bark waste (MLB) has been investigated in a batch biosorption process. The biosorbent MLB was characterized by FTIR analysis. The extent of biosorption of Ni(II) ions was found to be dependent on solution pH, initial nickel ions concentration, biosorbent dose, contact time, and temperature. The experimental equilibrium biosorption data were analyzed by three widely used two-parameters Langmuir, Temkin and Freundlich isotherm models. Langmuir and Temkin isotherm models provided a better fit with the experimental data than Freundlich isotherm model by high correlation coefficients R2. The maximum adsorption capacity was 27.548 mg/g of Ni(II) ions onto MLB. The thermodynamic analysis indicated that the biosorption behavior of nickel ions onto MLB biosorbent was an endothermic process, resulting in higher biosorption capacities at higher temperatures. The negative values of ΔG° (−5.84 kJ/mol) and positive values of ΔH° (13.33 kJ/mol) revealed that the biosorption process was spontaneous and endothermic. Kinetic studies showed that pseudo-second order described well the biosorption experimental data. The modified loquat bark (MLB) was successfully used for the biosorption of nickel ions from synthetic and industrial electroplating effluents.  相似文献   

6.
The removal of metal ions from aqueous solutions by biosorption plays an important role in water pollution control. In this study, dried leaves and branches of poplar trees were studied for removing some toxic elements (cadmium, lead, and uranium) from aqueous solutions. The equilibrium experiments were systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent size and dosage, initial cadmium, lead and uranium concentration, and pH of the aqueous solution. Adsorption behavior was found to follow Freundlich and Langmuir isotherms. The results have shown that both dried leaves and branches can be effectively used for removing uranium, while only branches were found to remove lead and cadmium completely from the aqueous solution. The maximum biosorption capacity of leaves for uranium was found to be 2.3 mg g−1 and 1.7 mg g−1 and 2.1 mg g−1 for lead and cadmium on branches, respectively. In addition, the studied biomass materials were used in removing lead and cadmium from contaminated water and the method was found to be effective.  相似文献   

7.
This study described adsorption of uranium(VI) by citric acid modified pine sawdust (CAMPS) in batch and fixed-bed column modes at 295 K. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Koble–Corrigan and Dubinin–Radushkevich isotherm models. The results indicated that the Langmuir and Koble–Corrigan models provided the best correlation of the experimental data. The Elovish model was better to fit the kinetic process, which suggested that ion exchange was one of main mechanism. The effective diffusion parameter D i values indicated that the intraparticle diffusion was not the rate-controlling step. In fixed-bed column adsorption, the effects of bed height, feed flow rate, and inlet uranium (VI) concentration were studied by assessing breakthrough curve. The Thomas, the Yan and the bed-depth/service time (BDST) models were applied to the column experimental data to determine the characteristic parameters of the column adsorption. The results were implied that CAMPS may be suitable as an adsorbent material for adsorption of uranium (VI) from an aqueous solution.  相似文献   

8.
Nickel(II) and lead(II) ionic imprinted 8-hydroxyquinoline polymers were synthesized by a precipitation polymerization technique and were used as selective solid phase extraction supports for the determination of nickel and lead in seawater by flow injection solid phase extraction on-line inductively coupled plasma-optical emission spectrometry. An optimum loading flow rate of 2.25 mL min−1 for 2 min and an elution flow rate of 2.25 mL min−1 for 1 min gave an enrichment factor of 15 for nickel. However, a low dynamic capacity and/or rate for adsorption and desorption was found for lead ionic imprinted polymer and a flow rate of 3.00 mL min−1 for 4-min loading and a flow rate of 2.25 mL min−1 for 1-min elution gave a enrichment factor of 5. The limit of detection was 0.33 μg L−1 for nickel and 1.88 μg L−1 for lead, with a precision (n = 11) of 8% (2.37 μg Ni L−1) for nickel and 11% (8.38 μg Pb L−1) for lead. Accuracy was also assessed by analyzing SLEW-3 (estuarine water) and TM-24 (lake water) certified reference materials, and the values determined were in good agreement with the certified concentrations.  相似文献   

9.
The biosorption behaviors and mechanisms of a novel exopolysaccharide (EPS), which is secreted by a mesophilic bacterium (namely Wangia profunda (SM-A87)) isolated from deep-sea sediment, for heavy metals Cu(II) and Cd(II) have been studied in this paper. The effects of SM-A87 EPS concentration, solution pH and ionic strength on the metal uptake were investigated by employing batch adsorption techniques, respectively. The optimum biosorption capacities were observed at pH 5.0 for Cu(II) with 48.0 mg/g and pH 6.0 for Cd(II) with 39.75 mg/g, respectively. Addition of salts decreased Cu(II) or Cd(II) uptake in the order of K+ < Na+ < Ca2+. Langmuir and Freundlich models were employed to describe the biosorption equilibrium data, indicating the favorable biosorption occurs and larger biosorption capacity and intensity for Cu(II) than for Cd(II). The biosorption kinetics for both metals can be well described by pseudo-second-order kinetic model, compared with pseudo-first-order and intraparticle diffusion kinetic models. The competitive biosorption was also studied, indicating that in two-component solution with different metal ratios, the selective biosorption of SM-A87 EPS for Cu(II) was much higher than for Cd(II). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated possible functional groups (e.g., OH, COO and COC) of SM-A87 EPS involved in metal biosorption process, which indicated the potential of using SM-A87 EPS as an effective sorbent for Cu(II) or Cd(II) removal from water.  相似文献   

10.
Ulva sp. and sepiolite were used to prepare composite adsorbent. The adsorption of uranium(VI) from aqueous solutions onto Ulva sp.-sepiolite has been studied by using a batch adsorber. The parameters that affect the uranium(VI) adsorption, such as solution pH, initial uranium(VI) concentration, and temperature, have been investigated and the optimum conditions determined. The adsorption patterns of uranium on the composite adsorbent followed the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich, Langmuir, and Dubinin-Radushkevich (D-R) models have been applied and the data correlate well with Freundlich model. The sorption is physical in nature (sorption energy, E = 4.01 kJ/mol). The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated from the slope and intercept of lnK d vs. 1/T plots. Thermodynamic parameters (ΔH ads = −22.17 kJ/mol, ΔS ads = −17.47 J/mol·K, ΔG o ads (298.15 K) = −16.96 kJ/mol) show the exothermic heat of adsorption and the feasibility of the process. The results suggested that the Ulva sp-sepiolite composite adsorbent is suitable as a sorbent material for recovery and biosorption/adsorption of uranium ions from aqueous solutions.  相似文献   

11.
In this work, sorption of uranium ions on volcanic tuff collected from the deposits located at the Tendurek of Eastern Turkey was investigated in batch technique. The effect of different parameters such as pH of the medium, contact time, uranium concentration and temperature were investigated. The maximum removal of U(VI) was found to be 68% at pH 5.0, initial U(VI) concentration of 75 mg L−1 and 30 °C. Thermodynamic parameters, such as enthalpy of adsorption ∆H°, free energy change ∆G° and entropy change ∆S° have been also calculated and interpreted. The suitability of the Langmuir, Freundlich and Dubinin-Radushkhevic adsorption models to the equilibrium data was investigated for uranium-volcanic tuff system. The results suggest that volcanic tuff can be used as efficient and cost effective adsorbents for uranium ion removal.  相似文献   

12.
Due to technological advancement, environment suffers from untreated toxic heavy metal bearing effluent coming from different industries. Chromium (VI) is one of those heavy metals having adverse impact on ecological balance, human, and plant health because of its carcinogenic properties. Biosorption is presented as an alternative to traditional technologies which are costly and inefficient for treatment of industrial wastes containing low amount of heavy metals. In this study, bioremediation of Cr (VI) ions by immobilized Bacillus cereus M1 16 was investigated in a laboratory scale packed bed up-flow column reactor. The effect of important parameters, such as the inlet flow rate, influent concentration, and effective bed height, has been studied. External mass transfer, surface adsorption, and intrabead mass transfer were also studied to conclude the rate limiting step for removal of Cr (VI) and to determine the process parameters which are important for biosorption optimization. The external mass transfer coefficient was calculated at different flow rates (6.51 × 10−2 to 7.58 × 10−2 cm/min). Using the model, the surface adsorption rate constant (k ad) and the intrabead mass transfer coefficient (k i) were predicted as 0.0267 × 10−3 and 0.7465 × 10−3 l/g/min, respectively. Both are much lower than the external mass transfer coefficient (k e). The surface adsorption phenomenon is acting as the rate-limiting step due to its high resistance for removal of Cr (VI).  相似文献   

13.
In this paper, the sorption properties of manganese oxide coated sand (MOCS) towards uranium(VI) from aqueous solutions were studied in a batch adsorption system. Scanning electron microscope (SEM) and infrared (IR) analyses were used to characterize MOCS. Parameters affecting the adsorption of uranium(VI), such as the contact time, salt concentration, competitive ions, temperature and initial uranium(VI) concentration, were investigated. The equilibrium adsorption data were analyzed by Langmuir, Freundlich and Redlich–Peterson models using nonlinear regressive analysis. The results indicated that the Langmuir and Redlich–Peterson models provided the best correlation of experimental data. The kinetic experimental data were analyzed using three kinetic equations including pseudo-first order equation, pseudo-second order equation and intraparticle diffusion model to examine the mechanism of adsorption and potential rate-controlling step. The process mechanism was found to be complex, consisting of both surface adsorption and pore diffusion. The effective diffusion parameter D i values estimated in the order of 10−7 cm2 s−1 indicated that the intraparticle diffusion was not the rate-controlling step. Thermodynamic study showed that the adsorption was a spontaneous, endothermic process. Adsorbed U(VI) ions were desorbed effectively (about 94.7%) by 0.1 mol L−1 HNO3. The results indicated that MOCS can be used as an effective adsorbent for the treatment of industrial wastewaters contaminated with U(VI) ions.  相似文献   

14.
Adsorption and recovery of uranium by nanoporous MCM-41 from aqueous solutions (synthetic solution and uranium conversion facility liquid waste) were investigated by use of a fixed-bed column (1.2 cm diameter and 3.0 cm height). Adsorption was carried out at flow rates 0.2 and 0.5 mL min?1, which correspond to retention times of 10 and 6 min. The maximum breakthrough capacity for uranium ions was achieved by use of nanoporous MCM-41 at the optimum pH of 3.6 and flow rate 0.2 mL min?1 (61.95 μg g?1). The Thomas and Yan models were applied to the experimental data, by use of linear regression, to determine the characteristics of the column for process design. The breakthrough curves calculated from the models were in good agreement with the experimental data. The elution behavior of uranium on nanoporous MCM-41 was studied with different eluents; the results showed that 0.1 M HCl is good eluent for uranium recovery. The regenerated column could be used in a multitude of adsorption–desorption cycles.  相似文献   

15.
This paper reports silica gel loaded with p-tert-butylcalix[8]arene as a new solid phase extractor for determination of trace level of uranium. Effective extraction conditions were optimized in column methods prior to determination by spectrophotometry using arsenazo(III). The results showed that U(VI) ions can be sorbed at pH 6 in a mini-column and quantitative recovery of U(VI) (>95–98%) was achieved by stripping 0.4 mol L−1 HCl. The sorption capacity of the functionalized sorbent is 0.072 mmol uranium(VI) g−1 modified silica gel. The relative standard deviation and detection limit were 1.2% (n = 10) for 1 μg uranium(VI) mL−1 solution and 0.038 μg L−1, respectively. The method was employed to the preconcentration of U(VI) ions from spiked ground water samples.  相似文献   

16.
Batch and dynamic extractions of uranium(VI) in 10−3–10−2M concentrations in 3–4M nitric acid medium have been investigated using a commercially available phosphinic acid resin (Tulsion CH-96). The extraction of uranium(VI) has been studied as a function of time, batch factor (V/m), concentrations of nitric acid and uranium(VI) ion. Dual extraction mechanism unique to phosphinic acid resin has been established for the extraction of uranium(VI). Distribution coefficient (K d ) of uranium(VI) initially decreases with increasing concentration of nitric acid, reaches a minimum value at 1.3M, followed by increases in K d . A maximum K d value of ∼2000 ml/g was obtained at 5.0M nitric acid. Batch extraction data has been fitted into the linearized Langmuir adsorption isotherm. The performance of the resin under dynamic extraction conditions was assessed by following the breakthrough behavior of the system. Effect of flow rate, concentrations of nitric acid and uranium ion in the feed on the breakthrough behavior of the system was studied and the data was fitted using Thomas model.  相似文献   

17.
The lead (II) biosorption potential of Aspergillus parasiticus fungal biomass has been investigated in a batch system. The initial pH, biosorbent dosage, contact time, initial metal ion concentrations and temperature were studied to optimize the biosorption conditions. The maximum lead (II) biosorption capacity of the fungal biosorbent was found as 4.02 × 10−4 mol g−1 at pH 5.0 and 20°C. The biosorption equilibrium was reached in 70 min. Equilibrium biosorption data were followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. In regeneration experiments, no significant loss of sorption performance was observed during four biosorption-desorption cycles. The interactions between lead (II) ions and biosorbent were also examined by FTIR and EDAX analysis. The results revealed that biosorption process could be described by ion exchange as dominant mechanism as well as complexation for this biosorbent. The ion exchange mechanism was confirmed by E value obtained from D-R isotherm model as well.  相似文献   

18.
The biosorption of nickel(II) ions from aqueous solution by Acacia leucocephala bark was studied in a batch adsorption system as a function of pH, initial metal ion concentration, adsorbent dosage, contact time and temperature. The maximum Ni(II) adsorption was obtained at pH 5. Further, the biosorbents were characterized by Fourier Transformer Infrared Spectroscopy (FTIR). The experimental data were analysed using three sorption kinetic models viz., the pseudo-first- and second-order equations and the intraparticle diffusion model. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process. The equilibrium nature of Ni(II) adsorption at different temperatures of 30, 40 and 50 °C have been described by the Langmuir and Freundlich isotherm models. The equilibrium data fit well Langmuir isotherm. The monolayer adsorption capacity of A. leucocephala bark as obtained from Langmuir isotherm at 30 °C was found to be 294.1 mg/g. The Chi-square (χ2) and Sum of the square errors (SSE) tests were also carried out to find the best fit adsorption isotherm and kinetic model. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated indicating that this system was a spontaneous and endothermic process. Present investigation emphasized that A. leucocephala bark may be utilized as a low cost adsorbent for nickel removal.  相似文献   

19.
To date only a small number of studies have investigated the chemical speciation of complexes and the fluorescence properties of metal ions whose emitted fluorescence lifetime is in the range of only few nanoseconds. This is due to a lack of advanced methods which allow the conduction of these measurements. In the current study we set up a new time-resolved laser fluorescence spectroscopy system with which the fluorescence properties of metal ions with very short fluorescence lifetimes such as uranium(IV) and its compounds can be investigated. By studying the fluorescence properties of uranium(IV) in perchloric acid, we showed uranium(IV) to have a detection limit of 5 × 10−7 M and a fluorescence decay time of 2.74 ± 0.36 ns. We further investigated the fluorescence properties of uranium(IV) during the reaction with fluoride and applied our novel laser system to study the complexation of uranium(IV) with fluoride.Our data revealed the formation of a 1:1 complex of uranium(IV) and fluoride. The corresponding complex formation constant of uranium(IV) fluoride UF3+ was found to be log β0 = 9.43 ± 1.94. Our results demonstrate that our novel time-resolved laser fluorescence spectroscopy system can successfully conduct speciation measurements of metal ions and their compounds with very short-lived fluorescence lifetimes. Using this laser system, it is possible to analytically investigate such elements and compounds in environmentally relevant concentration ranges.  相似文献   

20.
Diglycolamide functionalized multi-walled carbon nanotubes (DGA-MWCNTs) were synthesized by sequential chemical reactions for removal of uranium from aqueous solution. Characterization studies were carried out using FT-IR spectroscopy, XRD and SEM analysis. Adsorption of uranium from aqueous solution on this material was studied as a function of nitric acid concentration, adsorbent dose and initial uranium concentration. The uranium adsorption data on DGA-MWCNTs followed the Langmuir and Freundlich adsorption isotherms. The adsorption capacity of DGA-MWCNTs as well as adsorption isotherms and the effect of temperature on uranium ion adsorption were investigated. The standard enthalpy, entropy, and free energy of adsorption of the uranium with DGA-MWCNTs were calculated to be 6.09 kJ mole−1, 0.106 kJ mole−1 K−1 and −25.51 kJ mole−1 respectively at 298K. The results suggest that DGA-MWCNTs can be used as efficient adsorbent for uranium ion removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号