首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The central model of this paper is anM/M/1 queue with a general probabilistic feedback mechanism. When a customer completes his ith service, he departs from the system with probability 1–p(i) and he cycles back with probabilityp(i). The mean service time of each customer is the same for each cycle. We determine the joint distribution of the successive sojourn times of a tagged customer at his loops through the system. Subsequently we let the mean service time at each loop shrink to zero and the feedback probabilities approach one in such a way that the mean total required service time remains constant. The behaviour of the feedback queue then approaches that of anM/G/1 processor sharing queue, different choices of the feedback probabilities leading to different service time distributions in the processor sharing model. This is exploited to analyse the sojourn time distribution in theM/G/1 queue with processor sharing.Some variants are also considered, viz., anM/M/1 feedback queue with additional customers who are always present, and anM/G/1 processor sharing queue with feedback.  相似文献   

2.
This paper deals with a generalized M/G/1 feedback queue in which customers are either “positive" or “negative". We assume that the service time distribution of a positive customer who initiates a busy period is G e (x) and all subsequent positive customers in the same busy period have service time drawn independently from the distribution G b (x). The server is idle until a random number N of positive customers accumulate in the queue. Following the arrival of the N-th positive customer, the server serves exhaustively the positive customers in the queue and then a new idle period commences. This queueing system is a generalization of the conventional N-policy queue with N a constant number. Explicit expressions for the probability generating function and mean of the system size of positive customers are obtained under steady-state condition. Various vacation models are discussed as special cases. The effects of various parameters on the mean system size and the probability that the system is empty are also analysed numerically. AMS Subject Classification: Primary: 60 K 25 · Secondary: 60 K 20, 90 B 22  相似文献   

3.
This paper deals with the steady-state behaviour of an M/G/1 queue with an additional second phase of optional service subject to breakdowns occurring randomly at any instant while serving the customers and delayed repair. This model generalizes both the classical M/G/1 queue subject to random breakdown and delayed repair as well as M/G/1 queue with second optional service and server breakdowns. For this model, we first derive the joint distributions of state of the server and queue size, which is one of chief objectives of the paper. Secondly, we derive the probability generating function of the stationary queue size distribution at a departure epoch as a classical generalization of Pollaczek–Khinchin formula. Next, we derive Laplace Stieltjes transform of busy period distribution and waiting time distribution. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

4.
We study anM/M/1 group arrival queue in which the arrival rate, service time distributions and the size of each group arrival depend on the state of an underlying finite-state Markov chain. Using Laplace transforms and matrix analysis, we derive the results for the queue length process, its limit distribution and the departure process. In some special cases, explicit results are obtained which are analogous to known classic results.  相似文献   

5.
Choudhury  Gautam 《Queueing Systems》2000,36(1-3):23-38
This paper deals with an MX/G/1 queueing system with a vacation period which comprises an idle period and a random setup period. The server is turned off each time when the system becomes empty. At this point of time the idle period starts. As soon as a customer or a batch of customers arrive, the setup of the service facility begins which is needed before starting each busy period. In this paper we study the steady state behaviour of the queue size distributions at stationary (random) point of time and at departure point of time. One of our findings is that the departure point queue size distribution is the convolution of the distributions of three independent random variables. Also, we drive analytically explicit expressions for the system state probabilities and some performance measures of this queueing system. Finally, we derive the probability generating function of the additional queue size distribution due to the vacation period as the limiting behaviour of the MX/M/1 type queueing system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Time-dependent analysis of M/G/1 vacation models with exhaustive service   总被引:1,自引:0,他引:1  
We analyze the time-dependent process in severalM/G/1 vacation models, and explicitly obtain the Laplace transform (with respect to an arbitrary point in time) of the joint distribution of server state, queue size, and elapsed time in that state. Exhaustive-serviceM/G/1 systems with multiple vacations, single vacations, an exceptional service time for the first customer in each busy period, and a combination ofN-policy and setup times are considered. The decomposition property in the steady-state joint distribution of the queue size and the remaining service time is demonstrated.  相似文献   

7.
Design of a production system with a feedback buffer   总被引:1,自引:0,他引:1  
Lee  Ho Woo  Seo  Dong Won 《Queueing Systems》1997,26(1-2):187-202
In this paper, we deal with an M/G/1 Bernoulli feedback queue and apply it to the design of a production system. New arrivals enter a “main queue” before processing. Processed items leave the system with probability 1-p or are fed back with probability p into an intermediate finite “feedback queue”. As soon as the feedback queue is fully occupied, the items in the feedback queue are released, all at a time, into the main queue for another processing. Using transform methods, various performance measures are derived such as the joint distribution of the number of items in each queue and the dispatching rate. We then derive the optimal buffer size which minimizes the overall operating cost under a cost structure. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Chen  Hong  Kella  Offer  Weiss  Gideon 《Queueing Systems》1997,27(1-2):99-125
In this paper a fluid approximation, also known as a functional strong law of large numbers (FSLLN) for a GI/G/1 queue under a processor-sharing service discipline is established and its properties are analysed. The fluid limit depends on the arrival rate, the service time distribution of the initial customers, and the service time distribution of the arriving customers. This is in contrast to the known result for the GI/G/1 queue under a FIFO service discipline, where the fluid limit is piecewise linear and depends on the service time distribution only through its mean. The piecewise linear form of the limit can be recovered by an equilibrium type choice of the initial service distribution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Nam Kyoo Boots  Henk Tijms 《TOP》1999,7(2):213-220
This paper considers theM/M/c queue in which a customer leaves when its service has not begun within a fixed interval after its arrival. The loss probability can be expressed in a simple formula involving the waiting time probabilities in the standardM/M/c queue. The purpose of this paper is to give a probabilistic derivation of this formula and to outline a possible use of this general formula in theM/M/c retrial queue with impatient customers. This research was supported by the INTAS 96-0828 research project and was presented at the First International Workshop on Retrial Queues, Universidad Complutense de Madrid, Madrid, September 22–24, 1998.  相似文献   

10.
This paper addresses the question of how long it takes for anM/G/1 queue, starting empty, to approach steady state. A coupling technique is used to derive bounds on the variation distance between the distribution of number in the system at timet and its stationary distribution. The bounds are valid for allt. This research was supported in part by a grant from the AT&T Foundation and NSF grant DCR-8351757.  相似文献   

11.
We consider the M/M/1 queue with processor sharing. We study the conditional sojourn time distribution, conditioned on the customer’s service requirement, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. The asymptotic formulas relate to, and extend, some results of Morrison (SIAM J. Appl. Math. 45:152–167, [1985]) and Flatto (Ann. Appl. Probab. 7:382–409, [1997]). This work was partly supported by NSF grant DMS 05-03745.  相似文献   

12.
We consider anM/G/1 queue with FCFS queue discipline. We present asymptotic expansions for tail probabilities of the stationary waiting time when the service time distribution is longtailed and we discuss an extension of our methods to theM [x]/G/1 queue with batch arrivals.  相似文献   

13.
We study a PH/G/1 queue in which the arrival process and the service times depend on the state of an underlying Markov chain J(t) on a countable state spaceE. We derive the busy period process, waiting time and idle time of this queueing system. We also study the Markov modulated EK/G/1 queueing system as a special case.  相似文献   

14.
We consider an M/PH/1 queue with balking based on the workload. An arriving customer joins the queue and stays until served only if the system workload is below a fixed level at the time of arrival. The steady state workload distribution in such a system satisfies an integral equation. We derive a differential equation for Phase type service time distribution and we solve it explicitly, with Erlang, Hyper-exponential and Exponential distributions as special cases. We illustrate the results with numerical examples.  相似文献   

15.
We show in this paper that the computation of the distribution of the sojourn time of an arbitrary customer in a M/M/1 with the processor sharing discipline (abbreviated to M/M/1 PS queue) can be formulated as a spectral problem for a self-adjoint operator. This approach allows us to improve the existing results for this queue in two directions. First, the orthogonal structure underlying the M/M/1 PS queue is revealed. Second, an integral representation of the distribution of the sojourn time of a customer entering the system while there are n customers in service is obtained.  相似文献   

16.
In this paper continuity theorems are established for the number of losses during a busy period of the M/M/1/n queue. We consider an M/GI/1/n queueing system where the service time probability distribution, slightly different in a certain sense from the exponential distribution, is approximated by that exponential distribution. Continuity theorems are obtained in the form of one or two-sided stochastic inequalities. The paper shows how the bounds of these inequalities are changed if further assumptions, associated with specific properties of the service time distribution (precisely described in the paper), are made. Specifically, some parametric families of service time distributions are discussed, and the paper establishes uniform estimates (given for all possible values of the parameter) and local estimates (where the parameter is fixed and takes only the given value). The analysis of the paper is based on the level crossing approach and some characterization properties of the exponential distribution. Dedicated to Vladimir Mikhailovich Zolotarev, Victor Makarovich Kruglov, and to the memory of Vladimir Vyacheslavovich Kalashnikov.  相似文献   

17.
We study the steady-state queue length and waiting time of the M/G/1 queue under the D-policy and multiple server vacations. We derive the queue length PGF and the LSTs of the workload and waiting time. Then, the mean performance measures are derived. Finally, a numerical example is presented and the effects of employing the D-policy are discussed. AMS Subject Classifications 60K25 This work was supported by the SRC/ERC program of MOST/KOSEF grant # R11-2000-073-00000.  相似文献   

18.
We consider a G / M / 1 queue with two-stage service policy. The server starts to serve with rate of μ1 customers per unit time until the number of customers in the system reaches λ. At this moment, the service rate is changed to that of μ2 customers per unit time and this rate continues until the system is empty. We obtain the stationary distribution of the number of customers in the system.  相似文献   

19.
A call center is a facility for delivering telephone service, both incoming and outgoing. This paper addresses optimal staffing of call centers, modeled as M/G/n queues whose offered traffic consists of multiple customer streams, each with an individual priority, arrival rate, service distribution and grade of service (GoS) stated in terms of equilibrium tail waiting time probabilities or mean waiting times. The paper proposes a methodology for deriving the approximate minimal number of servers that suffices to guarantee the prescribed GoS of all customer streams. The methodology is based on an analytic approximation, called the Scaling-Erlang (SE) approximation, which maps the M/G/n queue to an approximating, suitably scaled M/G/1 queue, for which waiting time statistics are available via the Pollaczek-Khintchine formula in terms of Laplace transforms. The SE approximation is then generalized to M/G/n queues with multiple types of customers and non-preemptive priorities, yielding the Priority Scaling-Erlang (PSE) approximation. A simple goal-seeking search, utilizing SE/PSE approximations, is presented for the optimal staffing level, subject to GoS constraints. The efficacy of the methodology is demonstrated by comparing the number of servers estimated via the PSE approximation to their counterparts obtained by simulation. A number of case studies confirm that the SE/PSE approximations yield optimal staffing results in excellent agreement with simulation, but at a fraction of simulation time and space.  相似文献   

20.
In this paper we consider an M/G/1 queue with k phases of heterogeneous services and random feedback, where the arrival is Poisson and service times has general distribution. After the completion of the i-th phase, with probability θ i the (i + 1)-th phase starts, with probability p i the customer feedback to the tail of the queue and with probability 1 − θ i p i  = q i departs the system if service be successful, for i = 1, 2 , . . . , k. Finally in kth phase with probability p k feedback to the tail of the queue and with probability 1 − p k departs the system. We derive the steady-state equations, and PGF’s of the system is obtained. By using them the mean queue size at departure epoch is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号