首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Zinc Oxide (ZnO) nanorod arrays were grown on different substrates by hydrothermal method. The crystallinity of ZnO nanorod was regularly investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine morphology of the ZnO nanorods. The results indicate that the nanorods grow along [002] orientation. SEM and TEM images and XRD patterns show that the growth of ZnO nanorods on graphene/Quartz substrate is better than the other substrates due to the number and size of the nanorods which are highly affected through the properties of ZnO seed layers and it has lower defects than the other substrates. PL spectra ZnO would have a higher concentration of oxygen vacancy.  相似文献   

2.
A simple method of synthesizing nanomaterials and the ability to control the size and position of them are crucial for fabricating nanodevices. In this work, we developed a novel ammonia aqueous solution method for growing well-aligned ZnO nanorod arrays on a silicon substrate. For ZnO nanorod growth, a thin zinc metal seed layer was deposited on a silicon substrate by thermal evaporation. Uniform ZnO nanorods were grown on the zinc-coated silicon substrate in aqueous solution containing zinc nitrate and ammonia water. The growth temperature was as low as 60-90 degrees C and a 4-in. wafer size scale up was possible. The morphology of a zinc metal seed layer, pH, growth temperature, and concentration of zinc salt in aqueous solution were important parameters to determine growth characteristics such as average diameters and lengths of ZnO nanorods. We could demonstrate the discrete controlled growth of ZnO nanorods using sequential, tailored growth steps. By combining our novel solution method and general photolithography, we selectively grew ZnO nanorod arrays on a patterned silicon substrate. Our concepts on controlled ZnO nanorod growth using a simple solution method would be applicable for various nanodevice fabrications.  相似文献   

3.
采用3种不同的方式制备ZnO薄膜籽晶层:旋涂、喷雾热解和脉冲激光沉积。对于每一种制备方式,其薄膜的晶体结构、形貌、表面粗糙度等性能分别用X射线衍射(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)进行了表征。之后,通过水热合成方法,在3种籽晶层衬底上制备得到具有不同结构和形貌特征的ZnO纳米棒阵列。结果表明,ZnO纳米棒生长和籽晶层制备方式具有极强的相关性。最后,对两者相关性的生长机理进行了解释。  相似文献   

4.
Semiconductor nanorod arrays on a substrate have a preferential alignment orientation that minimizes the excessive free energy of the system. In the case of wet chemically synthesized zinc oxide (ZnO) nanorod on the amorphous surfaces, the thermodynamic driving force determines the orientation to be normal to the surface. Among the various kinds of amorphous surfaces, the spherical seed layer composed of ZnO precursors gives isotropic radially aligned arrays. For other surfaces, such as wrinkled and planar ZnO precursor thin film, nanorod arrays are aligned to be perpendicular to the tangential line of the surface. The maximum value of the aspect ratio of the nanorod is determined by the thermodynamic relationship. The number density of nanorods per unit precursor particles decreases with increasing contact angle of the seed particles.  相似文献   

5.
Effects of substrates and seed layers on solution growing ZnO nanorods   总被引:1,自引:0,他引:1  
Oriented ZnO nanorods were fabricated in a two-step approach, including the synthesis of seed layer on different substrates and the growth of ZnO nanorods in aqueous solutions of zinc nitrate and hexamethylenetetramine at low temperature. The effects of seed layer synthesized by different methods, sol–gel method and electrochemical deposition method, on the orientation and morphologies of ZnO nanorods were compared in detail. The optimal parameters for the growth of highly oriented ZnO nanorod arrays were found and the forming mechanism was also disclosed. Furthermore, as an application of the ZnO nanorod film, dye-sensitized solar cells based on it were successfully fabricated. The cell performances of ZnO nanorods grown on ED-ZnO seed layer deposited at −700 mV were higher than those with SG-ZnO seed layer due to good nanostructure.  相似文献   

6.
Zinc oxide (ZnO) nanorods of different structures have been grown on indium-doped tin oxide substrates by using TiO2 as seed layer. The ZnO nanorods have been prepared using TiO2 seed layers annealed at different temperatures via a simple sol–gel method. The X-ray diffraction result indicates that the prepared samples are of wurtzite structure. Dye sensitized solar cells have been fabricated using the prepared ZnO nanorods. The open circuit voltage, short circuit current density, fill factor, and power conversion efficiency of the ZnO nanorod based dye sensitized solar cells prepared using TiO2 seed layers annealed at different temperatures have been determined. The improvement in power conversion efficiency may be due to the flower like structured ZnO nanorods with smaller diameter and large specific surface area which paves way for the efficient electron transfer in hybrid solar cells.  相似文献   

7.
High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 °C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 °C and solution concentration of 0.03 M possess highest aspect ratio of ∼21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance.  相似文献   

8.
On the basis of the highly oriented ZnO nanoparticle nanoribbons as the growth seed layer (GSL) and solution growth technique, we have synthesized vertical ZnO nanorod arrays with high density over a large area and multi-teeth brush nanostructure, respectively, according to the density degree of the arrangement of nanoparticle nanoribbons GSL on the glass substrate. This controllable and convenient technique opens the possibility of creating nanostructured film for industrial fabrication and may represent a facile way to get similar structures of other compounds by using highly oriented GSL to promote the vertical arrays growth. The growth mechanism of the formation of the ordered nanorod arrays is also discussed. The second-order nonlinear optical coefficient d31 of the vertical ZnO nanorod arrays measured by the Maker fringes technique is 11.3 times as large as that of d36 KH2PO4 (KDP).  相似文献   

9.
Low-temperature growth of ZnO nanorods by chemical bath deposition   总被引:1,自引:0,他引:1  
Aligned ZnO nanorod arrays were synthesized using a chemical bath deposition method at normal atmospheric pressure without any metal catalyst. A simple two-step process was developed for growing ZnO nanorods on a PET substrate at 90-95 degrees C. The ZnO seed precursor was prepared by a sol-gel reaction. ZnO nanorod arrays were fabricated on ZnO-seed-coated substrate. The ZnO seeds were indispensable for the aligned growth of ZnO nanorods. The ZnO nanorods had a length of 400-500 nm and a diameter of 25-50 nm. HR-TEM and XRD analysis confirmed that the ZnO nanorod is a single crystal with a wurtzite structure and its growth direction is [0001] (the c-axis). Photoluminescence measurements of ZnO nanorods revealed an intense ultraviolet peak at 378.3 nm (3.27 eV) at room temperature.  相似文献   

10.
电沉积种子层化学控制生长氧化锌纳米棒和纳米管   总被引:1,自引:1,他引:0  
采用水溶液法在电沉积的ZnO种子层上制备了高度取向的ZnO纳米棒阵列,并通过碱溶液化学腐蚀法获得了ZnO纳米管。对ZnO纳米棒和纳米管的溶液生长和腐蚀过程进行了分析。结果表明,种子层的结构和性能对ZnO纳米棒有着重要的影响,在-700 mV电位下沉积的种子层薄膜均匀性好,生长的纳米棒密度大、与基底垂直性好;碱溶液对纳米棒的腐蚀具有选择性,通过控制腐蚀液的浓度和时间,可获得中空的ZnO纳米管。  相似文献   

11.
通过低温水热法成功地将ZnO纳米棒阵列定向生长在了介孔锐钛矿TiO2纳米晶薄膜上,并主要利用X射线衍射、场发射扫描电子显微镜和光致发光光谱等对其进行了表征。所制备的纳米棒具有六边形的端面,纳米棒的尺寸及端面边长分布范围窄,并且沿c轴方向(002)表现出了明显的择优化生长。此外,相比于玻璃基底或TiO2纳米颗粒薄膜,生长在介孔TiO2薄膜上的ZnO纳米棒阵列表现出了较好的取向生长,表明基底的表面结构和组成对ZnO纳米棒阵列的生长有显著的影响。根据基底有序的多孔结构,讨论了纳米棒阵列可能的生长机理。所得到的ZnO纳米棒阵列在室温下分别表现出了以370 nm为中心的强近紫外光和以530 nm为中心的弱绿光两条荧光谱带。  相似文献   

12.
A method for measuring the electrical characteristics of aligned ZnO nanorod arrays (NRAs) directly grown on a pre-patterned four-point probe system in solution was proposed. This four-probe method enabled us to perform electrical measurements directly on the as-grown ZnO nanorod arrays without any additional processing. The location, shape and length of the rods directly grown on the four-probe electrodes were well controlled. The current–voltage characteristics showed a low turn-on voltage and a high saturation current. These ZnO NRAs devices were implemented as gas sensors for detecting hydrogen. The sensitivity increased with the concentration of H2 and the operating temperature.  相似文献   

13.
We report a study on the effect of seeding on glass substrates with zinc oxide nanocrystallites towards the hydrothermal growth of ZnO nanorods from a zinc nitrate hexahydrate and hexamethylenetetramine solution at 95 °C. The seeding was done with pre-synthesized ZnO nanoparticles in isopropanol with diameters of about 6–7 nm as well as the direct growth of ZnO nanocrystallites on the substrates by the hydrolysis of pre-deposited zinc acetate film. The nanorods grown on ZnO nanoparticle seeds show uniform dimensions throughout the substrate but were not homogenously aligned vertically from the substrate and appeared like nanoflowers with nanorod petals. Nanorods grown from the crystallites formed in situ on the substrates displayed wide variations in dimension depending upon the preheating and annealing conditions. Annealing the seed crystals below 350 °C led to scattered growth directions whereupon preferential orientation of the nanorods perpendicular to the substrates was observed. High surface to volume ratio which is vital for gas sensing applications can be achieved by this simple hydrothermal growth of nanorods and the rod height and rod morphology can be controlled through the growth parameters.  相似文献   

14.
This paper reports a reproducible low-temperature solution-based process for the preparation of ZnO films of nanorod arrays and their application to dye-sensitized solar cells (DSSCs). A two-step approach was employed for the epitaxial growth of ZnO. We began with the preparation of a (002)-oriented ZnO seed layer by the electrochemical deposition method. After the treatment the substrate was soaked in an aqueous solution containing ZnCl2 and complex agents. A large-scale fabrication of ZnO nanorod arrays on transparent conductive oxides has been achieved after soaking at 95 degrees C for 1-48 h. The as-deposited ZnO film has a large surface area, therefore permitting a great amount of dye loading. The individually separated nanorod forms a linear nanoroad which should show more effective electron transportation than that in the film derived from ZnO powders. The DSSCs using these ZnO films as photoelectrodes show a conversion efficiency of about 0.6% at AM1.5.  相似文献   

15.
以氨水和硝酸锌为前躯体,采用低温水溶液法在涂敷ZnO晶种层的玻璃衬底上外延生长了ZnO纳米棒晶阵列。应用SEM、TEM、SAED和XRD表征了ZnO纳米晶的形貌和结构。讨论了该组成体系水溶液法纳米棒外延生长的机理及其对棒晶形貌的影响。通过对水溶液pH值的原位二次调整,制备出了ZnO纳米管和表面绒毛状的棒晶阵列,基于生长机理探讨了它们的形成原因,为实现不同形貌ZnO纳米晶阵列的优化控制提供了可能的技术途径。结果表明,不同形貌的ZnO均属沿c轴择优取向的六方纤锌矿结构。  相似文献   

16.
Vertically aligned arrays of ZnO nanorod (ZNR) were rapidly synthesized on ITO glass without needing a pre-prepared seed layer of ZnO via a hexamethylenetetramine (HMT)-assisted electrodeposition route. The effect of HMT on the ZNR electrodeposition process was investigated by the cyclic voltammetric curve and the current–time curve. An electrodeposition growth model based on the capping effect of HMT–4H was proposed. The as-synthesized ZNRs possess single crystalline, a wurtzite crystal structure with markedly preferential growth orientation along [0001] direction determined by transmission electron microscopy and powder X-ray diffraction. As compared with the electrodeposited ZnO film without HMT assistance, the ZNR arrays showed the high transmittance (90%) in the visible wavelength range and the blue-shift of the band gap energy. Moreover, the presence of an optical-phonon E2 (high) at 437.3 cm?1 in Raman spectrum and strong ultraviolet emission at 376 nm but weak defect-related deep level emission in the room temperature photoluminescence spectrum also indicated that such ZNR arrays are of good crystal quality. More importantly, the rapid synthesis of ZNRs could provide the feasibility for preparation of ZnO nanotubes within a shorter time by a subsequent electrochemical dissolution process.  相似文献   

17.
Encapsulated ZnO nanorod arrays were fabricated using a two-step method; hydrothermal followed by dip-coating. Intensity of X-ray diffraction peaks of ZnO nanorod films increased by encapsulation with ZnO and Fe doped ZnO layer. Encapsulation process increased diameter of the rods in a range of 20–40 nm. The optical studies indicated that the band-gap decreased with increment of the nanorod diameter, and increased with Fe doping in the ZnO layer. The electrical resistance of the samples demonstrated a remarkable reduction due to encapsulation, especially in the sample encapsulated with Fe doped-ZnO layer. The photoresponse behavior of ZnO nanorod films was investigated under different powers of ultraviolet illumination. The photoresponsivity was improved for encapsulated nanorods as compared to bare nanorods.  相似文献   

18.
A large quantity of Zinc oxide (ZnO) comb-like structure and high-density well-aligned ZnO nanorod arrays were prepared on silicon substrate via thermal evaporation process without any catalyst. The morphology, growth mechanism, and optical properties of the both structures were investigated using XRD, SEM, TEM and PL. The resulting comb-teeth, with a diameter about 20 nm, growing along the 0001 direction have a well-defined epitaxial relationship with the comb ribbon. The ZnO nanorod arrays have a diameter about 200 nm and length up to several micrometers growing approximately vertical to the Si substrate. A ZnO film was obtained before the nanorods growth. A growth model is proposed for interpreting the growth mechanism of comb-like zigzag-notch nanostructure. Room temperature photoluminescence measurements under excitation wavelength of 325 nm showed that the ZnO comb-like nanostructure has a weak UV emission at around 384 nm and a strong green emission around 491 nm, which correspond to a near band-edge transition and the singly ionized oxygen vacancy, respectively. In contrast, a strong and sharp UV peak and a weak green peak was obtained from the ZnO nanorod arrays.  相似文献   

19.
In the emerging field of nanoscience, tubular structures have been attracting remarkable interest due to their well-defined geometry, high specific area, and exceptional physical and chemical properties. Among them, oriented ZnO tubular arrays are regarded as promising candidates for various applications such as optoelectronics, solar cells, sensors, field emission, piezoelectrics, and catalysis. Although template-directed and selective dissolution synthesizing strategies are commonly used to prepare ZnO nanotubes, repeatability and large scale preparation are still challenging. In this study, ZnO nanotube arrays were controllably prepared by tuning the hydrothermal parameters, without the use of any additives. The mechanism underlying the self-conversion of ZnO nanorods to nanotubes was comprehensively studied based on the surface energy theory. It has been proved that the metastable top surface of the ZnO nanorods dissolves preferentially to reach a stable state during the hydrothermal growth. The specific surface energy of different crystal faces of ZnO nanorods was calculated using molecular dynamics simulation. The top surface of the ZnO nanorod, the Zn-terminated [0001] face, demonstrated much higher surface free energy than did the lateral faces, which indicated that the self-dissolution of top face (002) is energetically favorable. The self-conversion behavior of ZnO nanorod arrays with different diameters was specifically investigated by adjusting the initial precursor concentration, density of the crystal seed layers, and growth time. The dissolution-crystallization equilibrium concentration, determined by crystal surface energy, was found to be a key factor for the formation of the tubular structure. Notably, the critical equilibrium conditions for the self-conversion of ZnO nanorods to nanotubes, including zinc ion concentration and pH, have been identified by studying parameters corresponding to the dissolution-crystallization equilibrium for the metastable top surface of the ZnO nanorods. The preparation of the ZnO nanotube arrays was successfully accelerated and simplified via two-step procedure: (1) preparation of ZnO nanorod arrays and (2) self-conversion of ZnO nanorods to nanotubes. The preparation method based on the self-conversion mechanism from rods to tubes for polar oxides is simpler and more easily controllable as compared to the reported methods involving variety of additives. Because of the advantages of adaptability to a wide range of substrates, excellent conducting properties, and filling ability, the prepared ZnO nanotube array films were used in encapsulating phase-change materials. The encapsulated phase-change material exhibited excellent heat storage/release properties and heat conductivities. This indicates the potential application of precision devices for temperature control.  相似文献   

20.
Sol–gel zinc oxide (ZnO) thin films generally have non-uniform stripes. After annealing at high temperatures, these thin films are rough and granular. When ZnO rods are grown on such rough and non-uniform surface with the hydrothermal method, collimation, crystalline structure, and defect density are very poor. Here we explore a method to solve this problem. The ZnO thin film is first coated with an Au layer to prohibit the vertical extension of crystallization during the annealing period. As a result, the surface morphology of ZnO thin film is very flat and uniform after annealing. Afterwards, the ZnO rods are grown on the flat and uniform thin film, which gives rise to ZnO rods with very good collimation and crystalline structure. The extremely flat ZnO thin film even enables the fabrication of patterned ZnO rod arrays with regular shapes through lithography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号