首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

2.
In this paper we investigate the following Kirchhoff type elliptic boundary value problem involving a critical nonlinearity: $$\left\{\begin{array}{ll}-(a+b\int_{\Omega}|\nabla u|^2dx)\Delta u=\mu g(x,u)+u^5, u>0& \text{in }\Omega,\\ u=0& \text{on }\partial \Omega,\end{array}\right. {\rm {(K1)}}$$ here \({\Omega \subset \mathbb{R}^3}\) is a bounded domain with smooth boundary \({\partial \Omega, a,b \geq 0}\) and a + b > 0. Under several conditions on \({g \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})}\) and \({\mu \in \mathbb{R}}\) , we prove the existence and nonexistence of solutions of (K1). This is some extension of a part of Brezis–Nirenberg’s result in 1983.  相似文献   

3.
Using variational methods, we study the existence and nonexistence of nontrivial weak solutions for the quasilinear elliptic system $$\left\{\begin{array}{ll}- {\rm div}(h_1(|\nabla u|^2)\nabla u) = \frac{\mu}{|x|^2}u + \lambda F_u(x, u, \upsilon)\quad {\rm in}\,\Omega,\\- {\rm div}(h_2(|\nabla \upsilon|^2)\nabla \upsilon) = \frac{\mu}{|x|^2}\upsilon + \lambda F_\upsilon(x,u,\upsilon)\quad {\rm in}\,\Omega,\\u = \upsilon = 0 \qquad \qquad \qquad \qquad \qquad \qquad {\rm in}\, \partial\Omega, \end{array}\right.$$ where \({\Omega \subset \mathbb{R}^N,N \geq 3}\) , is a bounded domain containing the origin with smooth boundary \({\partial \Omega ; h_i, i = 1, 2}\) , are nonhomogeneous potentials; \({(F_u, F_v) = \nabla F}\) stands for the gradient of a sign-changing C 1-function \({F : \Omega \times \mathbb{R}^2 \to \mathbb{R}}\) in the variable \({{w = (u, v) \in \mathbb{R}^2}}\) ; and λ and μ are parameters.  相似文献   

4.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

5.
In this article, we study the Fu?ik spectrum of the fractional Laplace operator which is defined as the set of all \({(\alpha, \beta)\in \mathbb{R}^2}\) such that $$\quad \left.\begin{array}{ll}\quad (-\Delta)^s u = \alpha u^{+} - \beta u^{-} \quad {\rm in}\;\Omega \\ \quad \quad \quad u = 0 \quad \quad \quad \qquad {\rm in}\; \mathbb{R}^n{\setminus}\Omega.\end{array}\right\}$$ has a non-trivial solution u, where \({\Omega}\) is a bounded domain in \({\mathbb{R}^n}\) with Lipschitz boundary, n > 2s, \({s \in (0, 1)}\) . The existence of a first nontrivial curve \({\mathcal{C}}\) of this spectrum, some properties of this curve \({\mathcal{C}}\) , e.g. Lipschitz continuous, strictly decreasing and asymptotic behavior are studied in this article. A variational characterization of second eigenvalue of the fractional eigenvalue problem is also obtained. At the end, we study a nonresonance problem with respect to the Fu?ik spectrum.  相似文献   

6.
Let \({\Omega \subset \mathbb{R}^2}\) be an open, bounded domain and \({\Omega = \bigcup_{i = 1}^{N} \Omega_{i}}\) be a partition. Denote the Fraenkel asymmetry by \({0 \leq \mathcal{A}(\Omega_i) \leq 2}\) and write $$D(\Omega_i) := \frac{|\Omega_{i}| - {\rm min}_{1 \leq j \leq N}{|\Omega_{j}|}}{|\Omega_{i}|}$$ with \({0 \leq D(\Omega_{i}) \leq 1}\) . For N sufficiently large depending only on \({\Omega}\) , there is an uncertainty principle $$\left(\sum_{i=1}^{N}{\frac{|\Omega_{i}|}{|\Omega|}{\mathcal{A}}(\Omega_i)}\right) + \left(\sum_{i=1}^{N}{\frac{|\Omega_i|}{|\Omega|}D(\Omega_i)}\right) \geq \frac{1}{60000}.$$ The statement remains true in dimensions \({n \geq 3}\) for some constant \({c_{n} > 0}\) . As an application, we give an (unspecified) improvement of Pleijel’s estimate on the number of nodal domains of a Laplacian eigenfunction and an improved inequality for a spectral partition problem.  相似文献   

7.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

8.
We consider the instationary Navier–Stokes equations in a smooth exterior domain \({\Omega \subseteq \mathbb{R}^3}\) with initial value u 0, external force f = div  F and viscosity ν. It is an important question to characterize the class of initial values \({u_0\in L^2_{\sigma}(\Omega)}\) that allow a strong solution \({u \in L^s(0,T; L^q(\Omega))}\) in some interval \({[0,T[ \, , 0 < T \leq \infty}\) where s, q with 3 < q < and \({\frac{2}{s} + \frac{3}{q} =1}\) are so-called Serrin exponents. In Farwig and Komo (Analysis (Munich) 33:101–119, 2013) it is proved that \({\int_0^{\infty} \| e^{-\nu t A} u_0 \|_q^{s} \, {d}t < \infty}\) is necessary and sufficient for the existence of a strong solution \({u \in L^s(0,T ; L^q(\Omega)) \, , 0 < T \leq \infty}\) , if additionally 3 < q ≤ 8; here, A denotes the Stokes operator. In this paper, we will show that this result remains true if q > 8, and consequently, \({\int_0^{\infty} \| e^{-\nu t A} u_0 \|_q^{s} \, {d}t < \infty}\) is the optimal initial value condition to obtain such a strong solution for all possible Serrin exponents s, q.  相似文献   

9.
Let (M, g) and \({(K, \kappa)}\) be two Riemannian manifolds of dimensions m and k, respectively. Let \({\omega \in C^{2} (N), \omega > 0}\) . The warped product \({M \times_\omega K}\) is the (mk)-dimensional product manifold \({M \times K}\) furnished with metric \({g + \omega^{2} \kappa}\) . We prove that the supercritical problem $$- \Delta_{g + \omega^{2} \kappa} u + hu = u^{\frac{m+2}{m-2} \pm \varepsilon} ,\quad u > 0,\quad {\rm in}\,\, (M \times_{\omega} K, g + \omega^{2} \kappa)$$ has a solution concentrated along a k-dimensional minimal submanifold \({\Gamma}\) of \({M \times_{\omega } N}\) as the real parameter \({\varepsilon}\) goes to zero, provided the function h and the sectional curvatures along \({\Gamma}\) satisfy a suitable condition.  相似文献   

10.
The overlap, \({\mathcal{D}_N}\) , between the ground state of N free fermions and the ground state of N fermions in an external potential in one spatial dimension is given by a generalized Gram determinant. An upper bound is \({\mathcal{D}_N\leq\exp(-\mathcal{I}_N)}\) with the so-called Anderson integral \({\mathcal{I}_N}\) . We prove, provided the external potential satisfies some conditions, that in the thermodynamic limit \({\mathcal{I}_N = \gamma\ln N + O(1)}\) as \({N\to\infty}\) . The coefficient γ > 0 is given in terms of the transmission coefficient of the one-particle scattering matrix. We obtain a similar lower bound on \({\mathcal{D}_N}\) concluding that \({\tilde{C} N^{-\tilde{\gamma}} \leq \mathcal{D}_N \leq CN^{-\gamma}}\) with constants C, \({\tilde{C}}\) , and \({\tilde{\gamma}}\) . In particular, \({\mathcal{D}_N\to 0}\) as \({N\to\infty}\) which is known as Anderson’s orthogonality catastrophe.  相似文献   

11.
Consider the nonlinear heat equation $$v_t -\Delta v=|v|^{p-1}v \qquad \qquad \qquad (NLH)$$ in the unit ball of \({\mathbb{R}^2}\) , with Dirichlet boundary condition. Let \({u_{p,\mathcal{K}}}\) be a radially symmetric, sign-changing stationary solution having a fixed number \({\mathcal{K}}\) of nodal regions. We prove that the solution of (NLH) with initial value \({\lambda u_{p,\mathcal{K}}}\) blows up in finite time if |λ ?1| > 0 is sufficiently small and if p is sufficiently large. The proof is based on the analysis of the asymptotic behavior of \({u_{p,\mathcal{K}}}\) and of the linearized operator \({L= -\Delta - p | u_{p,\mathcal{K}} | ^{p-1}}\) .  相似文献   

12.
In this paper, we mainly study the asymptotic behavior of solutions to the following problems ${\triangle u \pm a(x)| \nabla u|^{q} = b(x)f(u), x \in \Omega, \ u|_{\partial \Omega} = + \infty}$ , where Ω is a bounded domain with a smooth boundary in ${\mathbb{R}^{N} (N \geq 2)}$ , q >  0, ${a \in C^{\alpha}(\bar{\Omega})}$ is positive in Ω, and ${b \in C^{\alpha}(\bar{\Omega})}$ is nonnegative in Ω and may be vanishing on the boundary. We assume that f is Γ-varying at ∞, whose variation at ∞ is not regular. Our analysis is based on the sub-supersolution method and Karamata regular variation theory.  相似文献   

13.
Let \({s = \{s_{jk}\}_{0 \leq j+k \leq 3}}\) be a given complex-valued sequence. The cubic complex moment problem involves determining necessary and sufficient conditions for the existence of a positive Borel measure \({\sigma}\) on \({\mathbb{C}}\) (called a representing measure for s) such that \({s_{jk} = \int_{\mathbb{C}}\bar{z}^j z^k d\sigma(z)}\) for \({0 \leq j + k \leq 3}\) . Put $$\Phi = \left(\begin{array}{lll} s_{00} & s_{01} & s_{10} \\s_{10} & s_{11} & s_{20} \\s_{01} & s_{02} & s_{11}\end{array}\right), \quad \Phi_z = \left(\begin{array}{lll}s_{01} & s_{02} & s_{11} \\s_{10} & s_{12} & s_{21} \\s_{02} & s_{03} & s_{12}\end{array} \right)\quad {\rm and}\quad\Phi_{\bar{z}} = (\Phi_z)^*.$$ If \({\Phi \succ 0}\) , then the commutativity of \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) is necessary and sufficient for the existence a 3-atomic representing measure for s. If \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) do not commute, then we show that s has a 4-atomic representing measure. The proof is constructive in nature and yields a concrete parametrization of all 4-atomic representing measures of s. Consequently, given a set \({K \subseteq \mathbb{C}}\) necessary and sufficient conditions are obtained for s to have a 4-atomic representing measure \({\sigma}\) which satisfies \({{\rm supp} \sigma \cap K \neq \emptyset}\) or \({{\rm supp} \sigma \subseteq K}\) . The cases when \({K = \overline{\mathbb{D}}}\) and \({K = \mathbb{T}}\) are considered in detail.  相似文献   

14.
In this paper, we are concerned with the multiplicity of nontrivial solutions for the following class of complex problems $$(-i\nabla - A(x))^2{u} = \mu|u|^{q-2}u + |u|^{2^*-2}u\, {\rm in}\, \Omega,\quad u=0\, {\rm on}\, \partial\, \Omega$$ where \({\Omega \subset \mathbb{R}^N(N \geq 4)}\) is a bounded domain with smooth boundary, \({A: \overline{\Omega} \rightarrow \mathbb{R}^N}\) is a continuous magnetic potential and \({2 \leq q < 2^* = \frac{2N}{N-2}}\) . Using the Lusternik-Schnirelman theory, we relate the number of solutions with the topology of Ω.  相似文献   

15.
We examine the validity of the Poincaré inequality for degenerate, second-order, elliptic operators H in divergence form on \({L_2(\mathbf{R}^{n}\times \mathbf{R}^{m})}\) . We assume the coefficients are real symmetric and \({a_1H_\delta\geq H\geq a_2H_\delta}\) for some \({a_1,a_2>0}\) where H δ is a generalized Gru?in operator, $$H_\delta=-\nabla_{x_1}\,|x_1|^{\left(2\delta_1,2\delta_1'\right)} \,\nabla_{x_1}-|x_1|^{\left(2\delta_2,2\delta_2'\right)} \,\nabla_{x_2}^2.$$ Here \({x_1 \in \mathbf{R}^n,\; x_2 \in \mathbf{R}^m,\;\delta_1,\delta_1'\in[0,1\rangle,\;\delta_2,\delta_2'\geq0}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta}}\) if \({|x_1|\leq 1}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta'}}\) if \({|x_1|\geq 1}\) . We prove that the Poincaré inequality, formulated in terms of the geometry corresponding to the control distance of H, is valid if n ≥ 2, or if n = 1 and \({\delta_1\vee\delta_1'\in[0,1/2\rangle}\) but it fails if n = 1 and \({\delta_1\vee\delta_1'\in[1/2,1\rangle}\) . The failure is caused by the leading term. If \({\delta_1\in[1/2, 1\rangle}\) , it is an effect of the local degeneracy \({|x_1|^{2\delta_1}}\) , but if \({\delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , it is an effect of the growth at infinity of \({|x_1|^{2\delta_1'}}\) . If n = 1 and \({\delta_1\in[1/2, 1\rangle}\) , then the semigroup S generated by the Friedrichs’ extension of H is not ergodic. The subspaces \({x_1\geq 0}\) and \({x_1\leq 0}\) are S-invariant, and the Poincaré inequality is valid on each of these subspaces. If, however, \({n=1,\; \delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , then the semigroup S is ergodic, but the Poincaré inequality is only valid locally. Finally, we discuss the implication of these results for the Gaussian and non-Gaussian behaviour of the semigroup S.  相似文献   

16.
Let Ω be a cone in ${\mathbb {R}^{n}}$ with n ≥? 2. For every fixed ${\alpha \in \mathbb {R}}$ we find the best constant in the Rellich inequality ${\int\nolimits_{\Omega}|x|^{\alpha}|\Delta u|^{2}dx \ge C\int\nolimits_{\Omega}|x|^{\alpha-4}|u|^{2}dx}$ for ${u \in C^{2}_{c}(\overline\Omega\setminus\{0\})}$ . We also estimate the best constant for the same inequality on ${C^{2}_{c}(\Omega)}$ . Moreover we show improved Rellich inequalities with remainder terms involving logarithmic weights on cone-like domains.  相似文献   

17.
Let Ω be a bounded, smooth domain in ${\mathbb{R}^2}$ . We consider the functional $$I(u) = \int_\Omega e^{u^2}\,dx$$ in the supercritical Trudinger-Moser regime, i.e. for ${\int_\Omega |\nabla u|^2dx > 4\pi}$ . More precisely, we are looking for critical points of I(u) in the class of functions ${u \in H_0^1 (\Omega )}$ such that ${\int_\Omega |\nabla u|^2 \, dx = 4\, \pi \, k\, (1+\alpha)}$ , for small α > 0. In particular, we prove the existence of 1-peak critical points of I(u) with ${\int_\Omega |\nabla u|^2dx = 4\pi(1 + \alpha)}$ for any bounded domain Ω, 2-peak critical points with ${\int_\Omega |\nabla u|^2dx = 8\pi(1 + \alpha)}$ for non-simply connected domains Ω, and k-peak critical points with ${\int_\Omega |\nabla u|^2 dx = 4k \pi(1 + \alpha)}$ if Ω is an annulus.  相似文献   

18.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

19.
20.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号