首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Liquid crystals》2000,27(4):459-465
Polymer dispersed discotic liquid crystals (PDDLCs) were prepared using the hexa-n-octanoate of rufigallol (RHO) and three polymer matrices: polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA). The molecular orientation of RHO in stretched PDDLC films was characterized by means of infrared dichroism. It was found that the stretching of films that contain RHO in both the columnar D1 and crystalline phase can effectively align columns of RHO along the stretching direction, with the short axes of the rigid cores lying in the plane of the film. By contrast with stretched polymer dispersed nematic liquid crystals, no orientation of RHO is induced for films stretched with RHO in the isotropic phase, followed by rapid cooling to room temperature. However, if stretched films are cooled under strain into the columnar D1 phase, orientation of RHO can develop with time.  相似文献   

2.
Polymer dispersed discotic liquid crystals (PDDLCs) were prepared using the hexa-n-octanoate of rufigallol (RHO) and three polymer matrices: polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(ethyl methacrylate) (PEMA). The molecular orientation of RHO in stretched PDDLC films was characterized by means of infrared dichroism. It was found that the stretching of films that contain RHO in both the columnar D1 and crystalline phase can effectively align columns of RHO along the stretching direction, with the short axes of the rigid cores lying in the plane of the film. By contrast with stretched polymer dispersed nematic liquid crystals, no orientation of RHO is induced for films stretched with RHO in the isotropic phase, followed by rapid cooling to room temperature. However, if stretched films are cooled under strain into the columnar D1 phase, orientation of RHO can develop with time.  相似文献   

3.
An investigation of the electrooptic properties of polymer dispersed liquid crystals (PDLC) is presented. These materials are light modulating systems. They show a reversible optical response from an opaque state to a highly transmitting state under the action of an appropriate electric field which aligns the liquid crystal director. The switching voltage required to establish such an electric field has been monitored as a function of (i) the starting materials used for the preparation of the PDLCs, (ii) the ageing (curing time) of the PDLC cells. Other physical properties, such as the electrical resistivity and the dielectric constant of the materials, have been measured. The correlations between these properties have been studied. The PDLC switching voltage appears to be strongly correlated with the resistivity. Our data suggest that ionic impurities play a dominant role with respect to the electrooptic response of PDLC films.  相似文献   

4.
An investigation of the electrooptic properties of polymer dispersed liquid crystals (PDLC) is presented. These materials are light modulating systems. They show a reversible optical response from an opaque state to a highly transmitting state under the action of an appropriate electric field which aligns the liquid crystal director. The switching voltage required to establish such an electric field has been monitored as a function of (i) the starting materials used for the preparation of the PDLCs, (ii) the ageing (curing time) of the PDLC cells. Other physical properties, such as the electrical resistivity and the dielectric constant of the materials, have been measured. The correlations between these properties have been studied. The PDLC switching voltage appears to be strongly correlated with the resistivity. Our data suggest that ionic impurities play a dominant role with respect to the electrooptic response of PDLC films.  相似文献   

5.
In this paper we deal with a cellulose derivative cholesteric dispersed liquid crystal (CCDLC) with mechanically tuneable optical properties. The composite is formed with a matrix of acetoxypropylcellulose with embedded micrometric and submicrometric droplets of a cholesteric mixture. Polarizing optical microscopy and atomic force microscopy (AFM) measurements performed on the system are reported and it is shown that the wavelength of the reflected light can be changed by a temperature variation and it is also changeable through a mechanical deformation. The pitch of the deformed droplets can be measured from AFM photographs and compared with the wavelength reflected by the CCDLC composite material.  相似文献   

6.
In this paper we deal with a cellulose derivative cholesteric dispersed liquid crystal (CCDLC) with mechanically tuneable optical properties. The composite is formed with a matrix of acetoxypropylcellulose with embedded micrometric and submicrometric droplets of a cholesteric mixture. Polarizing optical microscopy and atomic force microscopy (AFM) measurements performed on the system are reported and it is shown that the wavelength of the reflected light can be changed by a temperature variation and it is also changeable through a mechanical deformation. The pitch of the deformed droplets can be measured from AFM photographs and compared with the wavelength reflected by the CCDLC composite material.  相似文献   

7.
Control of light intensity and colour are two of the major features required in the realization of smart windows. We designed a bi-functional polymer dispersed liquid crystal (PDLC) film in order to satisfy such requirements, i.e. it is able both to modulate the optical transmission, if an external electric field is applied, and to change colour if exposed to sunlight. A monomer/liquid crystal mixture was doped with a small amount of photochromic material and homeotropically aligned by means of rough surfaces. A transparent and pale pink coloured film was achieved after photopolymerization. Such a film changes colour upon exposure for some seconds to sunlight or ultraviolet radiation in a persistent but reversible manner. In addition, the film appears transparent without the application of an electric field (OFF state) and becomes opaque on application of a driving voltage of about 75 V (ON state), and thus the film operates in reverse mode with respect to conventional PDLCs.  相似文献   

8.
Control of light intensity and colour are two of the major features required in the realization of smart windows. We designed a bi‐functional polymer dispersed liquid crystal (PDLC) film in order to satisfy such requirements, i.e. it is able both to modulate the optical transmission, if an external electric field is applied, and to change colour if exposed to sunlight. A monomer/liquid crystal mixture was doped with a small amount of photochromic material and homeotropically aligned by means of rough surfaces. A transparent and pale pink coloured film was achieved after photopolymerization. Such a film changes colour upon exposure for some seconds to sunlight or ultraviolet radiation in a persistent but reversible manner. In addition, the film appears transparent without the application of an electric field (OFF state) and becomes opaque on application of a driving voltage of about 75?V (ON state), and thus the film operates in reverse mode with respect to conventional PDLCs.  相似文献   

9.
The effects of fluorinated acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystal (PDLC) films are reported. The partial fluorination of host polymer matrices resulted in improved optical properties and better defined morphologies. An enhancement in contrast ratio was observed for fluorinated systems containing trifluoroethyl acrylate (TFEA) and hexafluoroisopropyl acrylate (HFIPA). Conversely, the incorporation of methyl acrylate (MA), a chemically similar non-fluorinated acrylate, resulted in no appreciable change in contrast ratio and an increase in relaxation time. Scanning electron microscopy morphological studies were conducted to understand further the influence of fluorinated monomers in PDLC systems.  相似文献   

10.
《Liquid crystals》2000,27(4):467-475
The effects of fluorinated acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystal (PDLC) films are reported. The partial fluorination of host polymer matrices resulted in improved optical properties and better defined morphologies. An enhancement in contrast ratio was observed for fluorinated systems containing trifluoroethyl acrylate (TFEA) and hexafluoroisopropyl acrylate (HFIPA). Conversely, the incorporation of methyl acrylate (MA), a chemically similar non-fluorinated acrylate, resulted in no appreciable change in contrast ratio and an increase in relaxation time. Scanning electron microscopy morphological studies were conducted to understand further the influence of fluorinated monomers in PDLC systems.  相似文献   

11.
《Liquid crystals》1997,22(2):145-156
Polymerization induced phase separation in mixtures of liquid crystals (LCs) and acrylates (Merck TL205/PN393) proceeds by liquid-gel demixing, in most cases of practical interest. At high LC content or low temperature of polymerization liquid-liquid separation cannot be excluded. Depending on the elasticity and homogeneity of the polymer network at the onset of phase separation, spherical or non-spherical LC domains are observed; non-spherical domains reflect an inhomogeneous gel structure. The change from spherical to non-spherical occurs in a very narrow range of LC concentrations and curing temperatures. The transition between these two morphologies can be explained using conversion phase diagrams obtained from the Flory-Huggins-Dusek theory. The contrast ratio of PDLCs made from the Merck mixture passes through a maximum when the droplet shape at the onset of phase separation changes from spherical to non-spherical. Lowering the LC content or increasing the temperature leads to smaller LC domains which scatter less efficiently. The reverse changes lead to early phase separation and large LC domains which also scatter inefficiently. It is speculated that the maximum of the contrast ratio is related to secondary phase separation, leading to subdomains of an appropriate size.  相似文献   

12.
Diffraction modes of holographic grating were fabricated with polyurethane acrylates of various monomers, and with various film compositions, irradiation intensities, cell gaps and reading angles. An optimum monomer composition, LC content and irradiation intensity were obtained in terms of diffraction efficiency. Of the two types of multifunctional acrylate examined, dipentaerythritol penta-/hexa-acylate (DPHPA) gave better diffraction efficiency than the trimethylolpropane triacrylate (TMPTA) throughout the monomer compositions tested. This was interpreted in terms of high elasticity of the high functionality monomer. The existence of an optimum irradiation intensity at fixed resin composition was interpreted in terms of optimum rate of cure. A monotonic increases of diffraction efficiency with cell gap and interbeam angle were also noted, implying that the grating was formed uniformly as visualized by scanning electron microscopy.  相似文献   

13.
14.
15.
The effect of the addition of polymer liquid crystals as dispersed molecules to polymethylmethacrylate (PMMA) on the optical properties in the UV-visible and near infrared regions is investigated. From transmission, absorption and reflection spectra the absorption coefficient (ω) and refractive index (n) at angular frequency of radiation (ω) have been calculated at room temperature. The values of the optical band gap (Eopt) have been obtained from the direct allowed transitions in k-space. The width of the tails of localized states in the band gap (ΔE) was evaluated from Urbach edges. Both the parameters (Eopt) and (ΔE) vary with the mixing ratio of dispersed liquid crystals.  相似文献   

16.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

17.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

18.
Polymer dispersed liquid crystals (PDLCs) with different sizes of the LC droplets are prepared based on the ultraviolet (UV) light curable acrylate monomers/LCs composites to fabricate the optical diffuser films. To acquire light diffusers with high optical performance, the effects of the monomer structure and the UV light intensity on the micro-structure of the PDLC films are studied. Results show that the PDLC films could exhibit a strong light scattering at the premise of maintaining high transmittance in the visible region. As the LC droplets are spherically dispersed in the polymer networks, when the size of LC droplets is about 3.0 μm, the haze can reach 88.5% and the transmittance is nearly 90.0%, which can be used as a bottom diffuser film. While when the size of LC droplets is about 10.0 μm, the haze and transmittance are 39.2% and 90.2%, respectively; hence, it can be a good choice for a top diffuser film. With the advantages of simple preparation, roll-to-roll industrial production and tunable optical properties, it is supported that the films based on UV-cured PDLC films can be applied as outstanding optical diffuser films in the liquid crystal display industry.  相似文献   

19.
《Liquid crystals》2000,27(10):1337-1341
We have investigated the morphology and electro-optical properties of reverse mode polymer dispersed liquid crystals as a function of liquid crystal loading. Reverse mode shutters have been obtained by a polymerization-induced phase separation of mixtures, consisting of a liquid crystalline monomer and a non-reactive nematic liquid crystal, placed between rough conductive surfaces. Such surfaces are able to keep the photopolymerizable mixtures homeotropically aligned without the use of any aligning polymer substrate. OFF state transmittances are always larger than 80% and the switching fields decrease if the non-reactive liquid crystal percentage is increased. Both rise and decay times are always lower than 10 ms. The electro-optical properties have been related to the sample morphology and a simple mode is proposed.  相似文献   

20.
We have investigated the morphology and electro-optical properties of reverse mode polymer dispersed liquid crystals as a function of liquid crystal loading. Reverse mode shutters have been obtained by a polymerization-induced phase separation of mixtures, consisting of a liquid crystalline monomer and a non-reactive nematic liquid crystal, placed between rough conductive surfaces. Such surfaces are able to keep the photopolymerizable mixtures homeotropically aligned without the use of any aligning polymer substrate. OFF state transmittances are always larger than 80% and the switching fields decrease if the non-reactive liquid crystal percentage is increased. Both rise and decay times are always lower than 10 ms. The electro-optical properties have been related to the sample morphology and a simple mode is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号