首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential equations are obtained in the approximation of a slender body for the shape of thin nonstationary axisymmetric cavities. In contrast to the equations obtained earlier by Grigoryan [1] and the author [2], the equations derived in the present paper contain the well-known asymptotic behavior for a flow of Kirchhoff type in the stationary case. For the case of compressible fluid, the dependence found for the asymptotic behavior of the cavity on the Mach number differs from the result obtained by Gurevich [3]. When compressibility is taken into account, the cavity area grows less rapidly. It is shown that the solutions of the obtained differential equations satisfy the well-known separation conditions [3, 4].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 3–10, May–June, 1981.I thank L. I. Sedov, S. S. Grigoryan, V. P. Karlikov, V. A. Eroshin and others who participated in a discussion of the work, and also L. A. Barmina for assisting in the preparation of the paper.  相似文献   

2.
The oscillations of a rigid body having a cavity partially filled with an ideal fluid have been studied in numerous reports, for example, [1–6]. Certain analogous problems in the case of a viscous fluid for particular shapes of the cavity were considered in [6, 7]. The general equations of motion of a rigid body having a cavity partially filled with a viscous liquid were derived in [8]. These equations were obtained for a cavity of arbitrary form under the following assumptions: 1) the body and the liquid perform small oscillations (linear approximation applicable); 2) the Reynolds number is large (viscosity is small). In the case of an ideal liquid the equations of [8] become the previously known equations of [2–6]. In the present paper, on the basis of the equations of [8], we study the free and the forced oscillations of a body with a cavity (vessel) which is partially filled with a viscous liquid. For simplicity we consider translational oscillations of a body with a liquid, since even in this case the characteristic mechanical properties of the system resulting from the viscosity of the liquid and the presence of a free surface manifest themselves.The solutions are obtained for a cavity of arbitrary shape. We then consider some specific cavity shapes.  相似文献   

3.
The problem of the motion of a cavity in a plane-parallel flow of an ideal liquid, taking account of surface tension, was first discussed in [1], in which an exact equation was obtained describing the equilibrium form of the cavity. In [2] an analysis was made of this equation, and, in a particular case, the existence of an analytical solution was demonstrated. Articles [3, 4] give the results of numerical solutions. In the present article, the cavity is defined by an infinite set of generalized coordinates, and Lagrange equations determining the dynamics of the cavity are given in explicit form. The problem discussed in [1–4] is reduced to the problem of seeking a minimum of a function of an infinite number of variables. The explicit form of this function is found. In distinction from [1–4], on the basis of the Lagrauge equations, a study is also made of the unsteady-state motion of the cavity. The dynamic equations are generalized for the case of a cavity moving in a heavy viscous liquid with surface tension at large Reynolds numbers. Under these circumstances, the steady-state motion of the cavity is determined from an infinite system of algebraic equations written in explicit form. An exact solution of the dynamic equations is obtained for an elliptical cavity in the case of an ideal liquid. An approximation of the cavity by an ellipse is used to find the approximate analytical dependence of the Weber number on the deformation, and a comparison is made with numerical calculations [3, 4]. The problem of the motion of an elliptical cavity is considered in a manner analogous to the problem of an ellipsoidal cavity for an axisymmetric flow [5, 6]. In distinction from [6], the equilibrium form of a flat cavity in a heavy viscous liquid becomes unstable if the ratio of the axes of the cavity is greater than 2.06.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 15–23, September–October, 1973.The author thanks G. Yu. Stepanov for his useful observations.  相似文献   

4.
Much research has been devoted to unsteady fluid flow with a free boundary. For example, Ovsyannikov [1] and Nalimov [2] have proven theorems on the existence and uniqueness of a solution, and a number of papers have proposed algorithms for numerical solution, based on various chain methods [3–6] or potential-theory methods [7–9]. In the present article we consider two-dimensional potential waves of finite amplitude on the interface between two heavy fluids of different densities. The initial problem is reduced to the Cauchy problem for a system of two integrodifferential equations. An algorithm for the numerical solution of this system is constructed, and the results of calculations are presented.  相似文献   

5.
Using the linear formulation, the problem of passage of a supersonic flow over slightly curved intersecting surfaces whose tangent planes form small dihedral angles with the incident flow velocity at every point is considered. Conditions on the surfaces are referred to planes parallel to the incident flow forming angles 0≤γ≤2π at their intersection [1]. The problem reduces to finding the solution of the wave equation for the velocity potential with boundary conditions set on the surfaces flowed over and the leading characteristic surface. The Volterra method is used to find the solution [2]. This method has been applied to the problem of flow over a nonplanar wing [3] and flow around intersecting nonplanar wings forming an angle γ=π/n (n=1, 2, 3, ...) with consideration of the end effect on the wings forming the angle [4]. In [5] the end effect was considered for nonplanar wings with dihedral angle γ=m/nπ. In the general case of an arbitrary angle 0≤γ≤2π the problem of finding the velocity potential reduces to solution of Volterra type integrodifferential equations whose integrands contain singularities [1]. It was shown in [6] that the integrodifferential equations may be solved by the method of successive approximation, and approximate solutions were found differing slightly from the exact solution over the entire range of interaction with the surface and coinciding with the exact solution on the characteristic lines (the boundary of the interaction region, the edge of the dihedral angle). The solution of the problem of flow over intersecting plane wings (the conic case) for an arbitrary angle γ was obtained in terms of elementary functions in [7], which also considered the effect of boundary conditions set on a portion of the leading wave diffraction. In [8, 9] the nonstationary problem of wave diffraction at a plane angle π≤γ≤2π was considered. On the basis of the wave equation solution found in [8], this present study will derive a solution which permits solving the problem of supersonic flow over nonplanar wings forming an arbitrary angle π≤γ≤2π in quadratures. The solutions for flow over nonplanar intersecting surfaces for the cases 0≤γ≤π [6] and π≤γ≤2π, found in the present study, permit calculation of gasdynamic parameters near a wing with a prismatic appendage (fuselage or air intake). The study presents a method for construction of solutions in various zones of wing-air intake interaction.  相似文献   

6.
A. D. Vasin 《Fluid Dynamics》1989,24(1):153-155
Slender axisymmetric cavities in a subsonic flow of compressible fluid were investigated in [1–4]. In [5] a finite-difference method was used to calculate the drag coefficient of a circular cone, near which the shape of the cavity was determined for subsonic, transonic, and supersonic water flows; however, in the supersonic case the entire shape of the cavity was not determined. Here, on the basis of slender body theory an integrodifferential equation is obtained for the profile of the cavity in a supersonic flow. The dependence of the cavity elongation on the cavitation number and the Mach number is determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 179–181, January–February, 1989.  相似文献   

7.
The combined influence of unsteady effects and free-stream nonuniformity on the variation of the flow structure near the stagnation line and the mechanical and thermal surface loads is investigated within the framework of the thin viscous shock layer model with reference to the example of the motion of blunt bodies at constant velocity through a plane temperature inhomogeneity. The dependence of the friction and heat transfer coefficients on the Reynolds number, the shape of the body and the parameters of the temperature inhomogeneity is analyzed. A number of properties of the flow are established on the basis of numerical solutions obtained over a broad range of variation of the governing parameters. By comparing the solutions obtained in the exact formulation with the calculations made in the quasisteady approximation the region of applicability of the latter is determined. In a number of cases of the motion of a body at supersonic speed in nonuniform media it is necessary to take into account the effect of the nonstationarity of the problem on the flow parameters. In particular, as the results of experiments [1] show, at Strouhal numbers of the order of unity the unsteady effects are important in the problem of the motion of a body through a temperature inhomogeneity. In a number of studies the nonstationary effect associated with supersonic motion in nonuniform media has already been investigated theoretically. In [2] the Euler equations were used, while in [3–5] the equations of a viscous shock layer were used; moreover, whereas in [3–4] the solution was limited to the neighborhood of the stagnation line, in [5] it was obtained for the entire forward surface of a sphere. The effect of free-stream nonuniformity on the structure of the viscous shock layer in steady flow past axisymmetric bodies was studied in [6, 7] and for certain particular cases of three-dimensional flow in [8–11].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 175–180, May–June, 1990.  相似文献   

8.
The behavior of discontinuities (weak shocks) of the parameters of a disturbed flow and their interaction with the discontinuities of the basic flow in the geometric acoustics approximation, when the variation of the intensity of such shocks along the characteristics or the bicharacteristics is described by ordinary differential equations, has been investigated by many authors. Thus, Keller [1] considered the case when the undisturbed flow is three-dimensional and steady, and the external inputs do not depend on the flow parameters. An analogous study was made by Bazer and Fleischman for the MGD isentropic flow of an ideal conducting medium [2], while Lugovtsov [3] studied the three-dimensional steady flow of a gas of finite conductivity for small magnetic Reynolds numbers and no electric field. Several studies (for example, [4]) have considered the behavior of discontinuities of the solutions from the general positions of the theory of hyperbolic systems of quasilinear equations. Finally, the interaction of weak shocks (or the equivalent continuous disturbances) with shock waves was studied in [5–11].In what follows we consider one-dimensional (with plane, cylindrical, and spherical waves) and quasi-one-dimensional unsteady flows, and also plane and axisymmetric steady flows. Two problems are investigated: the variation of the intensity of weak shocks in the presence of inputs which depend on the stream parameters, and the interaction of weak shocks with strong discontinuities which differ from contact (tangential) discontinuities.The thermodynamic properties of the gas are considered arbitrary. We note that the resulting formulas for the interaction coefficients of the weak and strong discontinuities are also valid for nonequilibrium flow.  相似文献   

9.
The problem of rigid-body motion in an unsteady gas flow is considered using a flow model [1] in which the motion of the body is described by a system of integrodifferential equations. The case in which among the characteristic exponents of the fundamental system of solutions of the linearized equations there are not only negative but also one zero exponent is analyzed. The instability conditions established with respect to the second-order terms on the right sides of the equations are noted. The problem may be regarded as a generalization of the problem of the lateral instability of an airplane in the critical case solved by Chetaev [2], pp. 407–408.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 18–22, May–June, 1989.  相似文献   

10.
The dependence of the radiated power on the characteristics of optical cavities in the case of flow systems has been investigated in a number of papers [1–3], in which it is assumed that population inversion of the laser levels is obtained until entry into the cavity. The operation of a cavity is analyzed in [1] in the geometric-optical approximation with allowance for vibrational relaxation in the gas flow. A simplified system of relaxation equations is solved under steady-state lasing conditions and an expression derived for the laser output power on the assumption of constant temperature, density, and flow speed. The vibrational relaxation processes in the cavity itself are ignored in [2, 3]. It is shown in those studies that the solution has a singularity at the cavity input within the context of the model used. In the present article the performance characteristics of a CO2-N2-He gas-dynamic laser with a plane cavity are calculated. A set of equations describing the processes in the cavity is analyzed and solved numerically. Population inversion of the CO2 laser levels is created by pre-expansion of the given mixture through a flat hyperbolic nozzle. The dependence of the output power on the reflectivities of the mirrors, the cavity length, the pressure, and the composition of the active gas medium is determined.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi FiziM, No. 5, pp. 33–40, September–October, 1972.  相似文献   

11.
Stream function–vorticity finite element solution of two-dimensional incompressible viscous flow and natural convection is considered. Steady state solutions of the natural convection problem have been obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element discretization and a displacement of the appropriate discrete equations. Solution is obtained by Newton–Raphson iteration of all equations simultaneously. The method then appears to give a steady solution whenever the flow is physically steady, but it does not give a steady solution when the flow is physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a degree of economy over primitive variable formulations. Physical results are given for the square cavity convection problem. The paper also reports on earlier work in which the most commonly used boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated solution procedures were attempted with very minimal success.  相似文献   

12.
The exact solutions of the nonlinear equations of filtration of an aerated liquid have been obtained in [1–3]. In [4] the system of equations of an aerated liquid have been reduced to the heat-conduction equation under certain assumptions. An approximate method of computing the nonsteady flow of an aerated liquid is given in [5], where the real flow pattern is replaced by a computational scheme of successive change of stationary states. In [6] the same problem is solved by the method of averaging. In the present article estimates of the solution of the equations for nonstationary filtration of an aerated liquid in one-dimensional layer are constructed under certain conditions imposed on the desired functions. These estimates can be used as approximate solutions with known error or for the verification of the accuracy of different approximate methods. We note that the use of comparison theorem for the estimate of solutions of equations of nonlinear filtration is discussed in [7–9]. The methods of constructing estimates of solutions of various problems of heat conduction are given in [10, 11]  相似文献   

13.
The theory of osculations of a spatially inhomogeneous plasma [1] draws substantially on the theory of geometrical optics as applied to differential equations of the second order. The theory of asymptotic solutions for equations of the second order has now been thoroughly developed [2]. The quasi-classical quantization rules determining the spectrum of eigenvalues of such equations are written in the form of the well-known Bohr -Sommerfeld integrals [3]. However, in analyzing the spectrum of oscillations of an inhomogeneous plasma it is insufficient in many cases to confine oneself to equations of the second order. For example, in an inhomogeneous magnetoactive plasma, even when the thermal motion of the particles is neglected, the field equations, generally speaking, reduce to a differential equation of the fourth order. Equations of the fourth order also arise in investigating the stability of the hydrodynamical flow of a viscous fluid [4].Certain special forms of fourth-order equations were studied in [4–6]. The authors of [6] obtained a quasi-classical quantization rule for equations of the fourth order with a small parameter associated with the leading derivative. The present paper investigates the general fourth-order equation with real coefficients. Asymptotic solutions of such an equation are obtained with an accuracy to terms of the first order in the approximation of geometrical optics, and quasi-classical quantization rules are established for various concrete cases. Using the theory thus developed, a new spectrum of oscillations is determined, characteristic only for an inhomogeneous plasma in a magnetic field.In conclusion, the authors express their gratitude to V. P. Silin who suggested the idea of matching the quasi-classical solutions, and also to Yu. N. Dnestrovskii and D. P. Kostomarova for discussing the paper and offering valuable criticism.  相似文献   

14.
This paper presents a general methodology for studying instabilities of natural convection flows enclosed in cavities of complex geometry. Different tools have been developed, consisting of time integration of the unsteady equations, steady state solving, and computation of the most unstable eigenmodes of the Jacobian and its adjoint. The methodology is validated in the classical differentially heated cavity, where the steady solution branch is followed for vary large values of the Rayleigh number and most unstable eigenmodes are computed at selected Rayleigh values. Its effectiveness for complex geometries is illustrated on a configuration consisting of a cavity with internal heated partitions. We finally propose to reduce the Navier–Stokes equations to a differential system by expanding the unsteady solution as the sum of the steady state solution and of a linear combination of the leading eigenmodes. The principle of the method is exposed and preliminary results are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The effect of unsteady injection and wall temperature variation on the parameters of the viscous shock layer near the stagnation line of a wing of infinite span at an angle of slip is investigated on the basis of the viscous shock layer model. An analytic solution of the nonstationary problem, valid near the surface of the wing for strong injection, is obtained. A numerical investigation is carried out and some results of calculating the unsteady viscous shock layer equations for various forms of the time dependence of the injection velocity and wing surface temperature are presented. The calculations are based on a finite-difference method of the second order of approximation in the space variable and the first order of approximation in time, which makes use of expression of the equations in divergence form, Newtonian linearization and vector sweeps across the shock layer. In the steady-state case the results of the calculations are in good agreement with the data of [7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 90–95, January–February, 1988.  相似文献   

16.
In the present study using the Newtonian approximation [1] we obtain an analytical solution to the problem of flow of a steady, uniform, hypersonic, nonviscous, radiating gas past a sphere. The three-dimensional radiative-loss approximation is used. A distribution is found for the gasdynamic parameters in the shock layer, the withdrawal of the shock wave and the radiant thermal flux to the surface of the sphere. The Newtonian approximation was used earlier in [2, 3] to analyze a gas flow with radiation near the critical line. In [2] the radiation field was considered in the differential approximation, with the optical absorption coefficient being assumed constant. In [3] the integrodifferential energy equation with account of radiation was solved numerically for a gray gas. In [4–7] the problem of the flow of a nonviscous, nonheat-conducting gas behind a shock wave with account of radiation was solved numerically. To calculate the radiation field in [4, 7] the three-dimensional radiative-loss approximation was used; in [5, 6] the self-absorption of the gas was taken into account. A comparison of the equations obtained in the present study for radiant flow from radiating air to a sphere with the numerical calculations [4–7] shows them to have satisfactory accuracy.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 44–49, November–December, 1972.In conclusion the author thanks G. A. Tirskii and É. A. Gershbein for discussion and valuable remarks.  相似文献   

17.
The machinery of Lie theory (groups and algebras) is applied to the system of equations governing the unsteady flow of a polytropic gas. The action on solutions of transformation groups which leave the equations invariant is considered. Using the invariants of the transformation groups, various symmetry reductions are achieved in both the steady state and the unsteady cases. These reduce the system of partial differential equations to systems of ordinary differential equations for which some closed-form solutions are obtained. It is then illustrated how each solution in the steady case gives rise to time-dependent solutions.  相似文献   

18.
A numerical method has been developed to solve the steady and unsteady incompressible Navier-Stokes equations in a two-dimensional, curvilinear coordinate system. The solution procedure is based on the method of artificial compressibility and uses a third-order flux-difference splitting upwind differencing scheme for convective terms and second-order center difference for viscous terms. A time-accurate scheme for unsteady incompressible flows is achieved by using an implicit real time discretization and a dual-time approach, which introduces pseudo-unsteady terms into both the mass conservation equation and momentum equations. An efficient fully implicit algorithm LU-SGS, which was originally derived for the compressible Eulur and Navier-Stokes equations by Jameson and Toon [1], is developed for the pseudo-compressibility formulation of the two dimensional incompressible Navier-Stokes equations for both steady and unsteady flows. A variety of computed results are presented to validate the present scheme. Numerical solutions for steady flow in a square lid-driven cavity and over a backward facing step and for unsteady flow in a square driven cavity with an oscillating lid and in a circular tube with a smooth expansion are respectively presented and compared with experimental data or other numerical results.  相似文献   

19.
A study is made of the process of relaxation to the equilibrium configuration of an isolated volume of a viscous incompressible Newtonian fluid under the influence of capillary forces. The fluid has the form of an infinite cylinder of arbitrary shape with a smooth compact and, in general, multiply connected boundary. In the course of relaxation, internal cavities collapse, and the cylinder acquires asymptotically a circular configuration. The quasisteady Stokes approximation [1] is used to describe the flow. First proposed by Frenkel' [2], this approximation has been used in the calculation of a dynamic boundary angle [3], the collapse of a circular cylinder [4], and the collapse of a hollow cylinder [5]. The analogy between the hydrodynamic equations in the Stokes approximation and the equations of elasticity theory made it possible [6] to describe the relaxation of a simply connected cylinder by a method close to the one employed by Muskheleshvili [7]. In the present paper, the approach of the author [8] based on work of Grinberg [9] and Vekua [10] is developed. It is shown that the true pressure distribution gives a minimum of the integral of the square of the pressure over the region for fixed integral of the pressure over the boundary. An explicit expression for the pressure is obtained in the form of the projection of a generalized function with support on the boundary onto the subspace of harmonic functions. The velocity field on the boundary of the region is calculated. An upper bound is found for the law of decrease of the perimeter of the region and for the time during which the number of connected components of the boundary remains unchanged.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 117–122, January–February, 1992.  相似文献   

20.
A separation criterion, i.e., a definite relationship between the external flow and the boundary layer parameters [1], can be used to estimate the possibility of the origination of separation of a two-dimensional boundary layer. A functional form of the separation criterion has also been obtained for a three-dimensional boundary layer [2] on the basis of dimensional analysis. As in the case of the two-dimensional boundary layer, locally self-similar solutions can be used to determine the specific magnitude of the separation criterion as a function of the values of the governing parameters. Locally self-similar solutions of the two-dimensional laminar boundary-layer equations have been found at the separation point for a perfect gas with a linear dependence of the coefficient of viscosity on the temperature (Ω=1) and Prandtl number P=1 [3, 4]. The influence of blowing and suction has been studied for this case [5]. Self-similar solutions have been obtained for Ω=1, P=0.723 for the limit case of hypersonic perfect gas flow [6]. Locally self-similar solutions of the three-dimensional laminar boundary-layer equations at the separation point are presented in [7] for a perfect gas with Ω=1, P=1. There are no such computations for Ω≠1, P≠1; however, the results of computing several examples for a two-dimensional flow [8] show that the influence of the real properties of a gas can be significant and should be taken into account. Self-similar solutions of the two- and three-dimensional boundary-layer equations at the separation point are found in this paper for a perfect gas with a power-law dependence of the viscosity coefficient on the enthalpy (Ω=0.5, 0.75, 1.0) for different values of the Prandtl number (P=0.5, 0.7, 1.0) in a broad range of variation of the external stream velocity (v 1 2 /2h1* = 0–0.99) and the temperature of the streamlined surface. Magnitudes of the separation criterion for a laminar boundary layer have been obtained on the basis of these data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号