首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wang FQ  Mu WH  Zheng XJ  Li LC  Fang DC  Jin LP 《Inorganic chemistry》2008,47(12):5225-5233
Four copper(II) complexes [Cu3(PZHD)2(2,2'-bpy)2(H2O)2].3H2O (1), [Cu3(DHPZA)2(2,2'-bpy)2] (2), [Cu(C2O4)phen(H2O)].H2O (3), and [Cu3(PZTC)2(2,2'-bpy)2].2H2O (4) were synthesized by hydrothermal reactions, in which the complexes 1-3 were obtained by the in situ Cu(II)/H3PZTC reactions (PZHD3- = 2-hydroxypyrazine-3,5-dicarboxylate, 2,2'-bpy = 2,2'-bipyridine, DHPZA3- = 2,3-dihydroxypyrazine-5-carboxylate, C2O42- = oxalate, phen = 1,10-phenanthroline, and H3PZTC = pyrazine-2,3,5-tricarboxylic acid). The Cu(II)/H3PZTC hydrothermal reaction with 2,2'-bpy, without addition of NaOH, results in the formation of complex 4. The complexes 1-4 and transformations from H3PZTC to PZHD3-, DHPZA3-, and C2O4(2-) were characterized by single-crystal X-ray diffraction and theoretical calculations. In the complexes 1, 2, and 4, the ligands PZHD3-, DPHZA3-, and PZTC3- all show pentadentate coordination to Cu(II) ion forming three different trinuclear units. The trinuclear units in 1 are assembled by hydrogen-bonding and pi-pi stacking to form a 3D supramolecular network. The trinuclear units in 2 acting as building blocks are connected by the carboxylate oxygen atoms forming a 2D metal-organic framework (MOF) with (4,4) topology. While the trinuclear units in 4 are linked together by the carboxylate oxygen atoms to form a novel 2D MOF containing right- and left-handed helical chains. The theoretical characterization testifies that electron transfer between OH- and Cu2+ and redox of Cu 2+ and Cu+ are the most important processes involved in the in situ copper Cu(II)/H3PZTC reactions, forming complexes of 1-3.  相似文献   

2.
Du ZY  Prosvirin AV  Mao JG 《Inorganic chemistry》2007,46(23):9884-9894
Hydrothermal reactions of manganese(II) salts with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2, H3L) and 1,10-phenanthroline (phen) led to six novel manganese(II) sulfonate-phosphonates, namely, [Mn2(HL)2(phen)4][Mn2(HL)2(phen)4(H2O)](2).6H2O (1), [Mn4(L)2(phen)8(H2O)2][ClO4](2).3H2O (2), [Mn(phen)(H2O)4]2[Mn4(L)4(phen)4].10H2O (3), [Mn6(L)4(phen)8(H2O)2].4H2O (4), [Mn6(L)4(phen)8(H2O)2].24H2O (5), and [Mn6(L)4(phen)6(H2O)4].5H2O (6). The structure of 1 contains two types of dinuclear manganese(II) clusters, and 2-3 exhibit two types of tetranuclear manganese(II) cluster units. 4-5 feature two different types of isolated hexanuclear manganese(II) clusters, whereas the hexanuclear manganese(II) clusters in 6 are bridged by sulfonate-phosphonate ligands into a 1D chain. Magnetic property measurements indicate that there exist weak antiferromagnetic interactions between magnetic centers in all six compounds.  相似文献   

3.
The reaction of cyclohexylphosphonic acid (C(6)H(11)PO(3)H(2)), anhydrous CuCl(2) and 2,2'-bipyridine (bpy) in the presence of triethylamine followed by a metathesis reaction with KNO(3) afforded [Cu(4)(mu-Cl)(2)(mu(3)-C(6)H(11)PO(3))(2)(bpy)(4)](NO(3))(2) (1). In an analogous reaction involving Cu(OAc)(2).H(2)O, the complex [Cu(4)(mu-CH(3)COO)(2)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4)](CH(3)COO)(2) (2) has been isolated. The three-component reaction involving Cu(NO(3))(2).3H(2)O, cyclohexylphosphonic acid and 2,2'-bipyridine in the presence of triethylamine afforded the tetranuclear assembly [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(2,2'-bpy)(4) (H(2)O)(2)](NO(3))(3) (3). Replacing 2,2'-bipyridine with 1,10-phenanthroline (phen) in the above reaction resulted in [Cu(4)(mu-OH)(mu(3)-C(6)H(11)PO(3))(2)(phen)(4)(H(2)O)(2)](NO(3))(3) (4). In all the copper(II) phosphonates (1-4) the two phosphonate ions bridge the four copper(II) ions in a capping coordination action. Each phosphonate ion bridges four copper(II) ions in a mu(4), eta(3) coordination mode or 4.211 of the Harris notation. Variable-temperature magnetic studies on reveal that all four complexes exhibit moderately strong intramolecular antiferromagnetic coupling. The DNA cleavage activity of complexes 1-4 is also described. Compounds 1 and 3 were able to completely convert the supercoiled pBR322 DNA form I to nick form II without any co-oxidant. In contrast, 50% conversion occurred with and 40% with 4. In the presence of magnesium monoperoxyphthalate all four compounds achieved rapid conversion of form I to form II.  相似文献   

4.
To study the conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylic acid (H(6)L), eleven new coordination polymers have been isolated from hydrothermal reactions of different metal salts with 1e,2a,3e,4a,5e,6a-cyclohexanehexacarboxylic acid (3e+3a, H(6)L(I)) and characterized. They are [Cd(12)(mu(6)-L(II))(mu(10)-L(II))(3)(mu-H(2)O)(6)(H(2)O)(6)]16.5 H(2)O (1), Na(12)[Cd(6)(mu(6)-L(II))(mu(6)-L(III))(3)]27 H(2)O (2), [Cd(3)(mu(13)-L(II))(mu-H(2)O)] (3), [Cd(3)(mu(6)-L(III))(2,2'-bpy)(3)(H(2)O)(3)]2 H(2)O (4), [Cd(4)(mu(4)-L(VI))(2)(4,4'-Hbpy)(4)(4,4'-bpy)(2)(H(2)O)(4)]9.5 H(2)O (5), [Cd(2)(mu(6)-L(II))(4,4'-Hbpy)(2)(H(2)O)(10)]5 H(2)O (6), [Cd(3)(mu(11)-L(VI))(H(2)O)(3)] (7), [M(3)(mu(9)-L(II))(H(2)O)(6)] (M=Mn (8), Fe (9), and Ni (10)), and [Ni(4)(OH)(2)(mu(10)-L(II))(4,4'-bpy)(H(2)O)(4)]6 H(2)O (11). Three new conformations of 1,2,3,4,5,6-cyclohexanehexacarboxylate, 6e (L(II)), 4e+2a (L(III)) and 5e+1a (L(VI)), have been derived from the conformational conversions of L(I) and trapped in these complexes by controlling the conditions of the hydrothermal systems. Complexes 1 and 2 have three-dimensional (3D) coordination frameworks with nanoscale cages and are obtained at relatively low temperatures. A quarter of the L(I) ligands undergo a conformational transformation into L(II) while the others are transformed into L(III) in the presence of NaOH in 2, while all of the L(I) are transformed into L(II) in the absence of NaOH in 1. Complex 3 has a 3D condensed coordination framework, which was obtained under similar reaction conditions as 1, but at a higher temperature. The addition of 2,2'-bipyridine (2,2'-bpy) or 4,4'-bipyridine (4,4'-bpy) to the hydrothermal system as an auxiliary ligand also induces the conformational transformation of H(6)L(I). A new L(VI) conformation has been trapped in complexes 4-7 under different conditions. Complex 4 has a 3D microporous supramolecular network constructed from a 2D L(III)-bridged coordination layer structure by pi-pi interactions between the chelating 2,2'-bpy ligands. Complexes 5-7 have different frameworks with L(II)/L(VI) conformations, which were prepared by using different amounts of 4,4'-bpy under similar synthetic conditions. Both 5 and 7 are 3D coordination frameworks involving the L(VI) ligands, while 6 has a 3D microporous supramolecular network constructed from a 2D L(II)-bridged coordination layer structure by interlayer N(4,4'-Hbpy)--HO(L(II)) hydrogen bonds. 3D coordination frameworks 8-11 have been obtained from the H(6)L(I) ligand and the paramagnetic metal ions Mn(II), Fe(II), and Ni(II), and their magnetic properties have been studied. Of particular interest to us is that two copper coordination polymers of the formulae [{Cu(II) (2)(mu(4)-L(II))(H(2)O)(4)}{Cu(I) (2)(4,4'-bpy)(2)}] (12 alpha) and [Cu(II)(Hbtc)(4,4'-bpy)(H(2)O)]3 H(2)O (H(3)btc=1,3,5-benzenetricarboxylic acid) (12 beta) resulted from the same one-pot hydrothermal reaction of Cu(NO(3))(2), H(6)L(I), 4,4'-bpy, and NaOH. The Hbtc(2-) ligand in 12 beta was formed by the in situ decarboxylation of H(6)L(I). The observed decarboxylation of the H(6)L(I) ligand to H(3)btc may serve as a helpful indicator in studying the conformational transformation mechanism between H(6)L(I) and L(II-VI). Trapping various conformations in metal-organic structures may be helpful for the stabilization and separation of various conformations of the H(6)L ligand.  相似文献   

5.
Using a series flexible thioether ligands, 4-(2-pyridylmethylthio)benzoic acid (HL(1)), 4-(4-pyridylmethylthio)benzoic acid (HL(2)) and 4-(3-pyridylmethylthio)benzoic acid (HL(3)), a 1D infinite chain [Zn(3)(L(1))(6)](n) (), a 2D interpenetrating sheet [Zn(L(2))(2)](n) (), and a chiral 3D framework [Zn(L(3))(2)H(2)O](n) () were obtained. Luminescent properties of these compounds were also studied.  相似文献   

6.
Five Zn(II) complexes of salicylaldehyde N(4)-phenylthiosemicarbazone (H(2)L) have been synthesized and physicochemically characterized. Out of the five Zn(II) complexes, one is binuclear {[(ZnL)(2)].3C(2)H(5)OH (1)} and the other four are mononuclear {[Zn(HL)(2)].C(2)H(5)OH (2), [ZnLbipy].1/2H(2)O (3), [ZnLphen].H(2)O (4) and [ZnLdmbipy] (5)} in nature. In complex 2, IR band due to nu(Zn-O) is absent and also the -OH signal due to the phenolic -OH group appears at delta=11.38ppm obtained from the (1)H NMR spectrum supports the existence of free -OH group. Complexes 3-5 are heterocyclic base adducts and their IR spectra display bands characteristic of coordinated heterocyclic bases. The molecular structure of one of the complex 3 is resolved by single crystal X-ray diffraction studies. The complex 3 is orthorhombic with a space group P2(1)cn. The Zn(II) in 3 is five coordinated and is having an approximately trigonal bipyramidal geometry with distortion from square based pyramid (TBDSBP).  相似文献   

7.
Several MnII compounds with phenylcyanamido ligands have been synthesized and characterized by means of single-crystal X-ray structural determination. The reported compounds show a wide variety of nuclearity from mononuclear and dinuclear systems to 1D chains and 2D networks in which X-phenylcyanamide (X-pcyd) anions act as the bridging ligand. Mononuclear compound [Mn(H2O)2(4-bzpy)2(3-Cl- pcyd)2] (2) crystallizes in the monoclinic system, P21/a space group, dinuclear compounds (mu 1,3-3-Cl-pcyd)2[Mn(2,2'-bpy)(3-Cl-pcyd)(MeOH)]2 (2) and (mu 1,3-3-Cl-pcyd)2[Mn(2,2'-bpy)(3-Cl-pcyd)(EtOH)]2 (3) crystallize in the triclinic system, P1 space group, 1D chain [(mu 1,3-4-Cl-pcyd)2[Mn(2,2'-bpy)]]n (4) crystallizes in the monoclinic system, /2/a space group, and 2D network [Mn(mu-4,4'-bpy)(mu 1,3-3-F-pcyd)2]n (5) crystallizes in the monoclinic system, C2 space group. Susceptibility measurements on compounds 2-4 reveal moderate antiferromagnetic coupling in all cases. MO calculations have been made to elucidate the main factors that control the superexchange pathway for this kind of ligand. Comparison of their magnetic behavior with that of related ligands such as azido and dicyanamido is reported.  相似文献   

8.
Using three nonlinear dicarboxylates, isophthalate (ipa), 4,4'-oxybis(benzoate) (oba), and ethylenedi(4-oxybenzoate) (eoba), we have prepared five neutral infinite copper(II) dicarboxylate coordination polymers containing lateral aromatic chelate ligands, namely [Cu(ipa)(2,2'-bpy)]n.2nH2O (1), [Cu2(ipa)2(phen)2H2O]n (2), [Cu(oba)(phen)]n (3), [Cu(oba)(2,2'-bpy)]n (4), and [Cu(eoba)(phen)]n (5; 2,2'-bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) by hydrothermal synthesis. X-ray single-crystal structural analyses of these complexes reveal that the nonlinear flexible or V-shaped dicarboxylates can induce the helicity or flexuousity of the polymeric chains and aromatic chelate ligands are important in providing potential supramolecular recognition sites for pi-pi aromatic stacking interactions. An appropriate combination of the bridging dicarboxylate and aromatic chelate can induce a pair of single-stranded helical or flexuous chains to generate a double-stranded helix or molecular zipper through supramolecular interactions, respectively.  相似文献   

9.
Five novel coordination polymers [Zn(2)(OA)(4,4'-bipy)(H(2)O)].0.5(4,4'-bipy), [Zn(2)(OA)(dib)(H(2)O)].H(2)O, [Zn(2)(OA)(bbi)(2)].3H(2)O, [Zn(2)(OA)(phen)(2)(H(2)O)] and [Zn(4)(OA)(2)(2,2'-bipy)(2)(H(2)O)].2H(2)O were obtained by hydrothermal reactions of Zn(NO(3))(2).6H(2)O with a V-shaped multicarboxylate ligand 3,3',4,4'-oxydiphthalic acid (H(4)OA) and a series of N-donor ligands, namely 4,4'-bipyridine (4,4'-bipy), 1,4-di(1-imidazolyl)benzene (dib), 1,1'-(1,4-butanediyl)bis(imidazole) (bbi), 1,10-phenanthroline (phen), 2,2'-bipyridine (2,2'-bipy). The structures of the complexes were established by single-crystal X-ray diffraction analysis. Complex exhibits a robust 3D porous structure with uncoordinated 4,4'-bipy molecules filling the cavities. Complexes and show a complicated 3D framework, while complexes and have a 2D network and a 1D helical chain structure, respectively. The results indicate that the multicarboxylate OA(4-) ligand can adopt varied coordination modes in the formation of the complexes and the influence of the N-donor ligand on the structure of the complexes is discussed. The photoluminescence properties of H(4)OA and were studied in the solid state at room temperature. Moreover, nonlinear optical measurements showed that displayed a second-harmonic-generation (SHG) response of 0.5 times of that for urea. The results suggested that the configuration and flexibility of the ligands play a key role in directing the related properties of the complexes.  相似文献   

10.
赵恒武  李斌 《结构化学》2012,31(1):61-66
Hydrothermal reactions between a new flexible multicarboxylate ligand of 3-(2-carboxy-phenoxy)-benzoic acid(H2L) and transitional metal cations of M2+(M = Cu2+,Ni2+) in the presence of the secondary ligands of 1,10-phenanthroline(phen),2,2'-bipyridine(2,2?-bpy),and 4,4'-bipyridine(4,4'-bpy) afford two novel coordination polymers Ni2(H2O)2L2(phen)(μ-4,4'-bpy)(1) and CuIIL(2,2'-bpy)(2).Both compounds were characterized by X-ray crystallography.Crystal data of 1:C31H24N3NiO7,Mr = 609.24,monoclinic,space group P21/c,a = 17.560(8),b = 10.528(5),c = 30.613(15) ,V = 5659(5) 3,Z = 4,Dc = 1.430 g/cm3,F(000) = 502,μ = 0.739 mm-1,R = 0.0902,wR = 0.1346(I > 2σ(I)),S = 1.002.Crystal data of 2:C24H16CuN2O5,Mr = 475.93,monoclinic,space group P21/n,a = 9.8904(13),b = 11.0782(16),c = 18.321(3) ,β = 11.0782(16)°,V = 1993.8(5) 3,Z = 4,Dc = 1.585 g/cm3,F(000) = 972,μ = 1.137 mm-1,R = 0.0433,wR = 0.0723(I > 2σ(I)) and S = 1.004.Compound 1 displays a one-dimensional(1D) zigzag chain structure constructed from phen ligands and the deprotonated ligands of L2-,which further forms a ladder-shaped supramolecular architecture via the bridge of 4,4'-bpy ligand.Complex 2 also possesses a ladder-shaped architecture based on the dinuclear CuII units.  相似文献   

11.
Liu YY  Ma JF  Yang J  Su ZM 《Inorganic chemistry》2007,46(8):3027-3037
Six new coordination polymers, namely [Zn1.5(BTC)(L1)(H2O)2].1.5H2O (1), [Zn3(BTC)2(L2)3] (2), [Zn3(BTC)2(L3)1.5(H2O)].H2O (3), [Co6(BTC)4(L1)6(H2O)3].9H2O (4), [Co1.5(BTC)(L2)1.5].0.25H2O (5), and [Co4(BTC)2(L3)2(OH)2(H2O)].4.5H2O (6), where L1 = 1,2-bis(imidazol-1-ylmethyl)benzene, L2 = 1,3-bis(imidazol-1-ylmethyl)benzene, L3 = 1,1'-(1,4-butanediyl)bis(imidazole), and BTC = 1,3,5-benzenetricarboxylate anion, were synthesized under hydrothermal conditions. In 1-6, each of L1-L3 serves as a bidentate bridging ligand. In 1, BTC anions act as tridentate ligands, and compound 1 shows a 2D polymeric structure which consists of 2-fold interpenetrating (6, 3) networks. In compound 2, BTC anions coordinate to zinc cations as tridentate ligands to form a net with (64.82)2(86)(62.8)2 topology. In compound 3, BTC anions act as tetradentate ligands and coordinate to zinc cations to form a net with (4.62.83)2(8.102)(4.6.83.10)2 topology. In compound 5, each BTC anion coordinates to three Co cations, and the framework of 5 can be simplified as (64.82)2(62.82.102)(63)2 topology. For 4 and 6, the 2D cobalt-BTC layers are linked by bis(imidazole) ligands to form 3D frameworks. In 6, the Co centers are connected by micro3-OH and carboxylate O atoms to form two kinds of cobalt-oxygen clusters. Thermogravimetric analyses (TGA) for these compounds are discussed. The luminescent properties for 1-3 and magnetic properties for 4-6 are also discussed in detail.  相似文献   

12.
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of metal complexes with two structurally related ligands, 9-acridinecarboxylic acid (HL(1)) and 4-quinolinecarboxylate acid (HL(2)), [Cu(2)(mu(2)-OMe)(2)(L(1))(2)(H(2)O)(0.69)](n) 1, [Cu(2)(L(1))(4)(CH(3)OH)(2)] 2, [Cu(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 3, [Mn(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 4, [Co(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 5, [Cu(L(2))(2)](n) 6, [Mn(L(2))(2)(H(2)O)](n) 7, and [Co(L(2))(2)(H(2)O)](n) 8. 1 is a three-dimensional (3D) polymer with an interpenetrating NbO type network showing one-dimensional (1D) channels, whereas 2 and 3 take bi- and trinuclear structures, respectively, because of the differences in basicity of the reaction systems in preparing the three complexes. 4 and 5 have trinuclear structures similar to that of 3. In 1-5, ligand L(1) performs different coordination modes with N,O-bridging in 1 and O,O'-bridging in 2-5, and the metal ions also show different coordination geometries: square planar in 1, square pyramidal in 2, and octahedral in 3-5. 6 has a two-dimensional structure containing (4,4) grids in which L(2) adopts the N,O-bridging mode and the Cu(II) center takes square planar geometry. 7 and 8 are isostructural complexes showing 1D chain structures, with L(2) adopting the O,O-bridging mode. In addition, the intermolecular O-H...N hydrogen bonds and pi-pi stacking interactions further extend the complexes (except 1 and 6), forming 3D structures. The magnetic properties of 2-7 have been investigated and discussed in detail.  相似文献   

13.
Chen CH  Cai J  Liao CZ  Feng XL  Chen XM  Ng SW 《Inorganic chemistry》2002,41(19):4967-4974
Seven cadmium(II) arenedisulfonate compounds, namely [Cd(2,2'-bpy)(2)(H(2)O)(peds)].4H(2)O (1), [Cd(2)(2,2'-bpy)(4)(H(2)O)(2)(1,5nds)](1,5nds).4H(2)O (2), [Cd(cyclam)(1,5nds)](2) (3), ([Cd(inia)(2)(H(2)O)(2)(2,6nds)].4H(2)O)(n)(4), ([Cd(inia)(2)(H(2)O)(2)(bpds)].4H(2)O)(n)(5), ([Cd(2)(inia)(4)(H(2)O)(3)(peds)(2)].2H(2)O)(n)(6), and [Cd(1,5nds)(H(2)O)(2)](n) (7), where 2,2'-bpy = 2,2'-bipyridyl, cyclam = 1,4,8,11-tetraazacyclotetradecane, inia = isonicotinamide, nds = naphthalenedisulfonate, bpds = 4,4'-biphenyldisulfonate, and peds = 4,4'-phenyletherdisulfonate, have been obtained from aqueous solution by using similar procedures and structurally characterized by X-ray single-crystal diffraction, IR spectroscopy, and thermal gravimetric analysis. In 1, the peds anion coordinates as a monodentate ligand, leading to a mononuclear unit. In 2 and 3, the 1,5nds anions coordinate as mu(2)-bridging ligands in different modes, producing charged or neutral dinuclear clusters. In 4 and 5, 2,6nds and bpds behave as mu(2)-spacers, resulting in 1-dimensional polymers. While in 6, the peds acts both as terminal and bridging ligands with the SO(3)(-) groups being either monodentate or mu(2)-bridging, creating a knotted 1-dimensional polymer with dinuclear clusters as the repeating units. In 7, 1,5nds acts as a bridging ligand with each SO(3)(-) coordinated as a mu(2)-bridging group to adjacent Cd(II) centers, leading to a 2-dimensional polymer. Together with the reported ([Cu(en)(2)(1,5nds)].2H(2)O)(n) (8), all of the six possible coordination modes adopted by organodisulfonate anions, on the assumption that each SO(3)(-) group could be monodentate or mu(2)-bridging, are realized by introducing nitrogen-containing organic ligands as auxiliaries.  相似文献   

14.
Ayyappan P  Evans OR  Lin W 《Inorganic chemistry》2002,41(13):3328-3330
A hydro(solvo)thermal reaction between zinc perchlorate and ethyl ester of a new pyridinecarboxylate bridging ligand of approximately 17.6 A in length yields a unique coordination polymer which contains both interdigitated infinite 1D chains and interpenetrated 2D rhombohedral grids [Zn(2.5)(L)(4)(mu(3)-OH)] x (H(2)O)(5), 1, where L is 3-[[4-(4-pyridylethenyl)phenyl]ethenyl]benzoate. The 1D chains contain mu(3)-bridged hydroxy groups and have a [Zn(4)(mu(3)-OH)(2)(L)(6)] stoichiometry, while the 2D grids have a Zn(L)(2) formula and diagonal distances of 31.7 and 25.2 A. Crystal data for 1: monoclinic space group P2/c, a = 15.686(2) A, b = 12.6103(16) A, c = 38.999(5) A, beta = 98.397(2) degrees, and Z = 4.  相似文献   

15.
Five new Zn(II)/Cd(II) coordination polymers constructed from di(1H-imidazol-1-yl)methane (L) mixed with different auxiliary carboxylic acid ligands formulated as [Zn(L)(H(2)L(1))(2)·(H(2)O)(0.2)](n) (1), {[Zn(L)(L(2))]·H(2)O}(n) (2), {[Cd(2)(L)(2)(L(2))(2)]·2H(2)O}(n) (3), {[Cd(L)(L(3))]·H(2)O}(n) (4) and [Cd(L)(L(4))](n) (5) (H(3)L(1) = 1,3,5-benzenetricarboxylic acid, H(2)L(2) = 4,4'-oxybis(benzoic acid), H(2)L(3) = m-phthalic acid and H(2)L(4) = p-phthalic acid) have been synthesized under hydrothermal conditions and structurally characterized. Four related auxiliary carboxylic acids were chosen to examine the influences on the construction of these coordination frameworks with distinct dimensionality and connectivity. The coordination arrays of 1-5 vary from 1D zigzag chain for 1, 2D (4,4) layer for 2-4, to 2-fold interpenetrated 3D coordination network with the α-Po topology for 5. The thermal and photoluminescence properties of complexes 1-5 in the solid state have also been investigated.  相似文献   

16.
Four new 2,2'-bipyridine and 1,10-phenanthroline complexes, namely [Mn(phenca)(2)]·(H(2)O)(2) (1), [Cu(4)(phen)(4)(OH-)(4)(H(2)O)(2)](DMF)(4)(ClO(4)-)(4)(H(2)O) (2), [Cu(2)(2,2-bipy)(2)(C(2)O(4)2-)(H(2)O)(2)(NO(3))(2)] (3) and [Cu(2,2-bipy)(2)(ClO(4)-)](ClO(4)-) (4) (2,2'-bpy = 2,2'-bipyridine, Hphenca = 1,10-phenanthroline-2-carboxylic acid) have been synthesized by a hydrothermal reaction. The products were characterized by elemental analysis, infrared spectroscopy and X-ray crystal diffraction. While strong hydrogen bonds play central roles in the formation of the 3D structure, the combined influence of the weak interactions such as π···π interactions is also evident in the structures. A preliminary investigation on the ion exchange properties of the complexes is presented.  相似文献   

17.
The coordination chemistries of the potential tetradentate ligands N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethylenediamine, H4[L1], the unsaturated analogue glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil), H2[L2], and N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2-dimethylpropylenediamine, H4[L3], have been investigated with nickel(II), palladium(II), and copper(II). The complexes prepared and characterized are [Ni(II)(H3L1)2] (1), [Ni(II)(HL2)2].5/8CH2Cl2 (2), [Ni(II)(L3**)] (3), [Pd(II)(L3**)][Pd(II)(H2L3) (4), and [Cu(II)(H2O)(L4)] (5), where (L4)2- is the oxidized diimine form of (L3)4- and (L3**)2- is the bis(o-iminosemiquinonate) diradical form of (L3)4-. The structures of compounds 1-5 have been determined by single crystal X-ray crystallography. In complexes 1 and 2, the ligands (H3L1)- and (HL2)- are tridentate and the nickel ions are in an octahedral ligand environment. The oxidation level of the ligands is that of an aromatic o-aminophenol. 1 and 2 are paramagnetic (mu(eff) approximately 3.2 mu(B) at 300 K), indicating an S = 1 ground state. The diamagnetic, square planar, four-coordinate complexes 3 and [Pd(II)(L3**)] in 4 each contain two antiferromagnetically coupled o-iminobenzosemiquinonate(1-) pi radicals. Diamagnetic [Pd(II)(H2L3)] in 4 forms an eclipsed dimer via four N-H.O hydrogen bonding contacts which yields a nonbonding Pd.Pd contact of 3.0846(4) A. Complex 5 contains a five-coordinate Cu(II) ion and two o-aminophenolate(1-) halves in (L4)2-. The electrochemistries of complexes 3 and 4a ([Pd(II)(L3**)] of 4) have been investigated, and the EPR spectra of the monocations and -anions are reported.  相似文献   

18.
Utilizing 3,5-bis(x-pyridyl)-1,2,4-triazole (x-Hpytz, x = 3; x = 4) as multidentate ligands, six novel coordination polymers with Zn(II) or Cd(II) metal ions were prepared: [Zn(3-pytz)(0.5)(OH)(0.5)Cl](n) (1, 1D ladder), {[Zn(3-Hpytz)(H(2)O)(4)] [Zn(3-Hpytz)(H(2)O)(3)·SO(4)]SO(4)·5H(2)O}(n) (2·5H(2)O, 1D chain), [Cd(3-Hpytz)(SO(4))](n) (3, 3D framework), {[Cd(3-Hyptz)SO(4)·3H(2)O]·2H(2)O}(n) (4·2H(2)O, 1D chain), [Zn(4-pytz)Cl](n) (5, 3D framework) and [Zn(2)(4-pytz)(SO(4))(OH)](n) (6, 3D framework). All compounds were obtained from hydrothermal reactions, with the exception of compound 4 which was obtained by solvent diffusion at room temperature. All compounds were characterized by FTIR, elemental analysis and TGA analysis and their structures were determined by X-ray diffraction. All compounds exhibited substantial thermal stability and showed photofluorescent properties that resulted from ligand π-π* transition.  相似文献   

19.
The synthesis, electrochemical and spectral (UV-vis, 1H NMR, IR, fluorescence) properties as well as thermal behaviors of Al(III) and Zn(II) complexes with the flavonoids quercetin (H2L(1)), rutin (H2L(2)) and galangin (HL(3)) are presented. The complexes may be formulated as [Al2(L(1))(H2O)8]Cl4, [Al3(L(2))2(H2O)12]Cl5, [Al(L(3))(H2O)4]Cl2, [Zn2(L(1))(H2O)4]Cl2, [Zn3(L(2))2(H2O)6]Cl2 and [Zn(L(3))(H2O)2]Cl. The higher fluorescence intensities of the complexes related to the free flavonoids, are attributed to the coordination of the ligands to the small, highly charged Al(III) and Zn(II) ions. The coordination effectively increases the rigidity of the ligand structure and increases the fluorescence quantum yield by reducing the probability of non-radiative energy dissipation process. Antioxidant activities of the compounds were also investigated under an electrochemical point of view. The cyclic voltammetric data show a considerable decrease of the oxidation potentials of the complexes related to that of the free flavonoids. Thus, the flavonoid-metal complexes are more effective antioxidants than the free flavonoids.  相似文献   

20.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(16):6424-6430
Hydrothermal reactions of zinc(II) carbonate with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2) and 1,10-phenanthroline (phen) or 4,4'-bipyridine (bipy) lead to three novel zinc(II) sulfonate-phosphonates, namely, [Zn(phen)3]2[Zn4(m-O3S-Ph-PO3)4(phen)4].20H2O (1), [Zn6(m-O3S-Ph-PO3)4(phen)8].11H2O (2), and [Zn6(m-O3S-Ph-PO3)4(bipy)6(H2O)4].18H2O (3). Compound 1 contains a tetranuclear zinc(II) cluster anion in which four Zn(II) ions are bridged by two tetradentate and two bidentate phosphonate groups, and the four negative charges of the cluster are compensated by two [Zn(phen)3]2+ cations. Compound 2 features a hexanuclear zinc(II) cluster in which the same tetranuclear cluster of 1 is bridged with two additional Zn(II) ions. The structure of 3 features a porous 3D network based on hexanuclear zinc(II) units of [Zn6(m-O3S-Ph-PO3)4] interconnected by 4,4'-bipy ligands. The hexanuclear cluster in 3 is different from that in 2 in that all four phosphonate groups in 3 are tridentate bridging. Compounds 1, 2, and 3 exhibit broad blue fluorescent emission bands at 378, 409, and 381 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号