首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Reactions of the flexible α,ω-bis(pyrazol-1-yl) compounds 1,2-bis(pyrazol-1-yl)ethane (L1), 1,8-bis(pyrazol-1-yl)-n-octane (L2), bis[2-(pyrazol-1-yl)ethyl]ether (L3) and bis[2-(pyrazol-1-yl)ethyl]thioether (L4) with precursor organometallic platinum complexes ([(PtBr2Me2)n], [(PtIMe3)4] and [(PtMe2(cod)]/I2) are described herein. The spectroscopic characterization of the platinum(IV) products of these reactions [PtBr2Me2{pz(CH2)mpz}], m = 2 (1) or 8 (2), [PtI2Me2{pz(CH2)2pz}] (3), [PtMe3(pzCH2CH2OCH2CH2pz)][BF4] (4) and [PtMe3(pzCH2CH2SCH2CH2pz)][CF3SO3] (5), where ‘pz’ is pyrazol-1-yl, is discussed. Furthermore, solid state structures of 1, a complex with a seven-membered chelate ring, and 4, a complex bearing the neutral κ2N,N′,κO ligand bis[2-(pyrazol-1-yl)ethyl]ether (L3) are reported.  相似文献   

2.
Procedures are described for the preparation of various bidentate and potentially tridentate chelating agents. These incorporate pyridyl, benzimidazole, imidazole or phenolic moieties. Phillips condensations of carboxylic acids with o-phenylenediamines were carried out in 4 M hydrochloric acid. Syntheses are reported for 2, 6-bis(N′-methylimidazol-2′-ylthiomethyl)pyridine, 2, 6-bis(benzimidazol-2′-ylthiomethyl)pyridine, 2-(4′-piperidyl)benzimidazole, 2-(3′-piperidyl)benzimidazole, 2-(3-N′-methylpiperidyl)benziinidazole, 2-(3-N′-methylpiperidyl)-N-methylbenzimidazole, 2-(2′-hydroxybenzyl)benzimidazole and 2-(2′-hydroxyben-zyl)N-methylbenzimidazole. The compounds were characterized where appropriate by their mass, uv, and 1H-nmr spectra. 2-(2′-Hydroxybenzyl)benzimidazole hydrochloride acts as a gelling agent in aqueous solution.  相似文献   

3.
The syntheses of a number of N-substituted α-amidinium thiolsulfates, CH2(S2O3?)-C(=NH2+)NH(CH2)nR are described, where n was varied from 1 to 3 and R represents such heteroaryl groups as 2-furyl, 2-thienyl, 3-indolyl and 2-, 3- and 4-pyridyl. The preparation of S-(2-imidazolinemethyl)thiolsulfuric acid, as an example of an N, N'-disubstituted α-amidinium thiolsulfate, is also reported.  相似文献   

4.
The new compound C10H6P(S)[NSi(CH3)3]2P(S) ( 3 ) which contains a P2N2 heterocycle has been prepared in low yield by partial thermal decomposition of 1-{[N,N′-bis(trimethylsilyl)acetamidinium]sulfido}-3-(trimethylsilylamino)-1 H,3 H,1 λ5,3 λ5-naphtho[1,8 a,8-cd][1,2,6]thiadiphosphinine-1,3-dithione [CH3C{NHSi(CH3)3}2]+[C10H6P(S)(NHSiMe3)SP(S)2] ( 2 ). Reaction of 2 with potassium hydroxide in acetonitrile gives the completely desilylated product [CH3C(NH2)2]+[C10H6P(S)(NH2)SP(S)2] ( 4 ). The structures of the new compounds 3 and 4 were elucidated by FTIR and NMR spectroscopy methods and by X-ray structure analyses.  相似文献   

5.
Quinazoline Carboxylic Acids. An Easy Route to (4-Oxo-3,4-dihydroquinazolin-3-yl)-alkanoic Acids, (4-Oxo-3,4-dihydro-1,2,3-benzotriazin-3-yl)-alkanoic Acids and their Esters A new route was found for the synthesis of (4-Oxo-3,4-dihydroquinazolin-3-yl)-alkanoic acids ( 8 ) and (4-Oxo-3,4-dihydro-1,2,3-benzotriazin-3-yl)-alkanoic acids ( 6 ) by cyclization of the N-(2-aminobenzoyl)amino acids 5 with HCOOH or HNO2. 2H-3,1-Benzoxazine-2,4(1H)-diones ( 1 ) reacted with glycine esters to 2 , which were cyclized by HNO2 to the esters 4 . Ester 4 was hydrolyzed to 6 (X = CH2). Diones 1 reacted with the most common amino acids (as the ammonium salt of tertiary amine) to amino-alkanoic acids 5 , which were cyclized with orthoformate to 7 or 8 depending on the reaction conditions.  相似文献   

6.
Cyclothiomethylation of phenyl hydrazine with CH2O and H2S in a ratio of 1: 3: 2 in an acidic medium (HCl) afforded previously unknown 3-phenyl-1,3,4-thiadiazolidine (35% yield) and N-phenyl(perhydro-1,3,5-dithiazin-5-yl)amine (35% yield). The analogous reaction in an alkaline medium (BuONa) produced N-phenyl(perhydro-1,3-thiazetidin-3-yl)amine (22% yield). The reaction of 1,2-diphenyl hydrazine with CH2O and H2S in an alkaline medium gave 1,2,4,5-tetraphenylhexahydro-1,2,4,5-tetrazine and previously unknown 3,4-diphenyl-1,3,4-thiadiazolidine and 5,6-diphenyltetrahydro-1,3,5,6-dithiadiazepine in 39 and 22% yields, respectively. Cyclothiomethylation of benzyl hydrazine afforded previously unknown bis[(6-benzyl-4,2,6-thiadiazolidin-2-yl)methyl] sulfide (60% yield) and N-benzyl(perhydro-1,3,5-dithiazin-5-yl)amine (19% yield). The reaction of tosyl hydrazine produced 3-[(p-tolyl)sulfonyl]-1,3,4-thiadiazolidine, N-(perhydro-1,3,5-dithiazin-5-yl)-p-tolylsulfonamide, and 3,7-bis(p-tolylsulfonylamino)-1,5-dithia-3,7-diazacyclooctane in 21, 38, and 41% yields, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1758–1767, October, 2006.  相似文献   

7.
The synthesis of three novel pyrazole-containing complexing acids, N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]-4-methoxypyridine}tetrakis(acetic acid)( 1 ), N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]pyrazine}-tetrakis(acetic acid) ( 2 ), and N,N,N′,N′-{6, 6′-bis[3-(aminomethyl)pyrazol-1-yl]-2, 2′-bipyridine}tetrakis(acetic acid) ( 3 ) is described. Ligands 1–3 formed stable complexes with EuIII, TbIII, SmIII, and DyIII in H2O whose relative luminescence yields, triplet-state energies, and emission decay lifetimes were measured. The number of H2O molecules in the first coordination sphere of the lanthanide ion were also determined. Comparison of data from the EuIII and TbIII complexes of 1–3 and those of the parent trisheterocycle N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-l-yl]pyridine}tetrakis(acetic acid) showed that the modification of the pyridine ring for pyrazine or 2, 2′-bipyridine strongly modify the luminescence properties of the complexes. MeO Substitution at C(4) of 1 maintain the excellent properties described for the parent compound and give an additional functional group that will serve for attaching the label to biomolecules in bioaffinity applications.  相似文献   

8.
5-R-Substituted 1(2)-vinyltetrazoles (R = Ar, Alk, CH2=CH, NH2, H) were synthesized by alkylation of 5-R-tetrazoles with 1,2-dibromoethane in the presence of triethylamine in acetonitrile, followed by elimination of triethylamine hydrobromide. Vinylation of dinuclear substrates, such as bis(1H-tetrazol-5-yl)-methane and 1,3-bis(1H-tetrazol-5-yl)benzene, under analogous conditions gave the corresponding N 1,N 2′- and N 2,N 2′-divinyl derivatives.  相似文献   

9.
Multiply charged ions from electrospray ionization (ESI) were observed for ruthenium-bidentate ligand complexes, such as [RuL2B]X2 and [(RuL2)2B]X4, where L is 2,2′-bipyridine, B are tetradentate ligands of 2,2′-bis(2′-pyridyl)bibenzimidazole and 2,6-bis(2′-pyridyl)benzodiimidazole, bidentate ligand of 2-(2′-pyridyl)benzimidazole and related compounds and X is CIO4- or CI-. ESI mass spectra showed a simple mass pattern for easy structural assignment and detecting impurities. The mass spectra for binuclear complexes provide a charge state distribution ranging from 4+ to 2+ for Ru(II)—Ru(II) compounds and 5+ to 2+ for Ru(II)—Rh(III) compounds. It was found that different multiply charged ions are generated by loss of counterions and by protonation/deprotonation at the proton site of ligands B. The abundances of these ions are qualitatively explained in terms of the acidity of metal complexes depending on the bridging ligand structures and the charge of the metal ions. Ions produced by removal of ligands were hardly observed.  相似文献   

10.
[Pd(cod)(cotl)]ClO4 (cod = 1,5-cyclooctadiene, cotl = cyclooctenyl, C8H13 ) undergoes substitutions with multidentate N-heterocycles: 1,3-bis(benzimidazolyl)benzene (L1), 1,3-bis(1-methylbenzimidazol-2-yl)benzene (L2), 2,6-bis(benzimidazolyl)pyridine (L3) and 2,6-bis(1-methylbenzimidazol-2-yl)pyridine (L4) to yield mono/binuclear complexes: [Pd(cotl)(L1)(OClO3)], [Pd(cotl)(L)]ClO4 (L = L2 or L3) and [Pd(cotl)2(L4)](ClO4)2. Dihalobridged binuclear complexes [PdX(cotl)]2 (X = Cl or Br) undergo halogen bridge cleavages with the multidentate N-heterocycles to form binuclear complexes of the type [PdX(cotl)2L] (X = Cl or Br; L = L1, L2, L3 or L4). The complexes were characterized by elemental analyses, 1H-, 13C-n.m.r., i.r., far-i.r. and FAB-mass spectral studies.  相似文献   

11.
Intramolecular cyclisation of properly protected and activated derivatives of 2′,3′-secouridine ( = 1-{2-hydroxy-1-[2-hydroxy-1-(hydroxymethyl)ethoxy]-ethyl}uracil; 1 ) provided access to the 2,2′-, 2,3′-, 2,5′-, 2′,5′-, 3′,5′-, and 2′,3′-anhydro-2′,3′-secouridines 5, 16, 17, 26, 28 , and 31 , respectively (Schemes 1–3). Reaction of 2′,5′-anhydro-3′-O-(methylsulfonyl)- ( 25 ) and 2′,3′-anhydro-5′-O-(methylsulfonyl)-2′,3′-secouridine ( 32 ) with CH2CI2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene generated the N(3)-methylene-bridged bis-uridine structure 37 and 36 , respectively (Scheme 3). Novel chiral 18-crown-6 ethers 40 and 44 , containing a hydroxymethyl and a uracil-1-yl or adenin-9-yl as the pendant groups in a 1,3-cis relationship, were synthesized from 5′-O-(triphenylmethyl)-2′,3′-secouridine ( 2 ) and 5′-O,N6-bis(triphenylmethyl)-2′,3′-secoadenosine ( 41 ) on reaction with 3,6,9-trioxaundecane-1,11-diyl bis(4-toluenesulfonate) and detritylation of the thus obtained (triphenylmethoxy) methylcompound 39 and 43 , respectively (Scheme 4).  相似文献   

12.
The reaction of thioquinanthrene 1 with sodium alkoxides and α,ω-dihaloalkanes leads to the formation of α,ω-bis[4-(4-methoxy-3-quinolinylthio)-3-quinolinylthio]alkanes 4 . The yield depends on the nature of α,ω-dihalo-alkanes. The effect of α,ω-dihaloalkanes of the following types: XCH2X (X = Cl,Br,I), X(CH2)2X (X = Cl,Br,I), Br(CH2)3Br and Br(CH2)6Br were studied. The preparation of 4-alkoxy-3′-(ω-bromoalkylthio)-3,4′-diquinolinyl sulfide 3 and their transformation to α,ω-bis(4-alkoxy-3-quinolinylthio)alkanes 6 were studied as well.  相似文献   

13.
A series of Cu+ complexes with ligands that feature varying numbers of benzimidazole/thioether donors and methylene or ethylene linkers between the central nitrogen atom and the thioether sulfur atoms have been spectroscopically and electrochemically characterized. Cyclic voltammetry measurements indicated that the highest Cu2+/Cu+ redox potentials correspond to sulfur‐rich coordination environments, with values decreasing as the thioether donors are replaced by nitrogen‐donating benzimidazoles. Both Cu2+ and Cu+ complexes were studied by DFT. Their electronic properties were determined by analyzing their frontier orbitals, relative energies, and the contributions to the orbitals involved in redox processes, which revealed that the HOMOs of the more sulfur‐rich copper complexes, particularly those with methylene linkers (? N? CH2? S? ), show significant aromatic thioether character. Thus, the theoretically predicted initial oxidation at the sulfur atom of the methylene‐bridged ligands agrees with the experimentally determined oxidation waves in the voltammograms of the NS3‐ and N2S2‐type ligands as being ligand‐based, as opposed to the copper‐based processes of the ethylene‐bridged Cu+ complexes. The electrochemical and theoretical results are consistent with our previously reported mechanistic proposal for Cu2+‐promoted oxidative C? S bond cleavage, which in this work resulted in the isolation and complete characterization (including by X‐ray crystallography) of the decomposition products of two ligands employed, further supporting the novel reactivity pathway invoked. The combined results raise the possibility that the reactions of copper–thioether complexes in chemical and biochemical systems occur with redox participation of the sulfur atom.  相似文献   

14.
《Mendeleev Communications》2022,32(6):780-782
The reaction of (dpp-bian)Ga–Zn(dpp-bian) (dpp-bian is 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with 1,3-di(4-pyridyl)propane results in 1D coordination polymer [(dpp-bian)Ga–Zn(dpp-bian)(μ2-1,3-Py2(CH2)3)]n with the retained Ga–Zn bond. In contrast, the coordination of 1,3-di(4-pyridyl)propane to Zn atoms in the (dpp-bian)Zn–Zn(dpp-bian) complex induces the cleavage of the Zn–Zn bond which is accompanied by reduction of dpp-bian radical anions to dianions. The reaction product represents 1D coordination polymer [{(dpp-bian)Zn}(μ2-1,3-Py2(CH2)3)]n.  相似文献   

15.
This paper reports the regioselective synthesis of new trifluoromethylated lipid derivatives, namely, 1-(5-hydroxy-5-trifluoromethyl-3-alkyl-4,5-dihydro-1H-pyrazol-1-yl)alkan-1-ones, through cyclocondensation reactions between a series of fatty hydrazides (palmitoyl, stearoyl, and oleoyl hydrazides) obtained from fatty acids from renewable resources (1,1,1-trifluoro-4-alkoxy-3-alken-2-ones [F3CC(O)CH?C(R1)OR, where R1?=?H and R?Et; R1?=?–(CH2)6CH3, –(CH2)6CH3, –(CH2)8CH3, –(CH2)9CH3, –(CH2)10CH3, –(CH2)12CH3, –(CH2)2Ph], and R?Me). Experimental observations showed that the lipophilic characteristic of 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-pyrazoles (5–7) prevent the acid catalyzed dehydration to aromatization of 1H-pyrazole ring, although in some cyclocondensations a proportion of the aromatic derivative 1-(5-trifluoromethyl-3-alkyl-1H-pyrazol-1-yl)alkan-1-one was obtained. All products were characterized using multinuclear (1H, 13C, 19F) NMR spectroscopy.  相似文献   

16.
The synthesis of tricyclic compounds on functionalized cyclam core is described. The addition of four methyl acrylate molecules and consecutive condensation of this derivative with ethylenediamine resulted in formation of 1,4,8,11-tetrakis(2-(N-(2-aminoethyl)carbamoyl)ethyl)-1,4,8,11-tetraazacyclotetradecane (3). Compound 3 was the substrate for further condensation with dialdehydes: iso-phthaldialdehyde and 2,6-pyridinedicarbaldehyde, resulting in spontaneous macrocycle ring closure to give tricyclic derivatives: 1,11:4,8-bis(benzene-1,3-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (4) in the reaction of 3 with iso-phthaldialdehyde and three isomers: 1,4:8,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5A), 1,11:4,8-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5B), and 1,8:4,11-bis(pyridine-2,6-diyl-bis(2-(N-(2-formidoylethylene)carbamoyl)ethylene))-1,4,8,11-tetraazacyclotetradecane (5C) when 2,6-pyridinedicarbaldehyde was used. The compounds 4, 5B, and 5C were identified crystallographically. The isolated 5A converted in solution into the mixture of 5B and 5C as monitored by the 1H NMR spectroscopy. The tricycle 5 is able to accept two manganese(II) metal ions by reacting with manganese(II) dichloride with simultaneous diprotonation of 5. Structure of the resulting Mn2(5BH2)Cl6·(CH3OH)2(H2O)2 was determined crystallographically.  相似文献   

17.
The solvento species obtained by the treatment of cis-RuCl2(N,N-L)2 [L = di-2-pyridyl sulfide (dps), di-2-pyrimidyl sulfide (dprs)] with AgPF6, reacted with dithioethers L′ [L′ = 2,6-bis(2-pyridylthiomethyl)pyridine (pytmp), 2,6-bis(2-pyrimidylthiomethyl)pyridine (prtmp) and 2,6-bis{2-(4-methyl)pyrimidylthiomethyl} pyridine (mprtmp)] to afford the compounds [Ru(N,N-L)2(N,S-L′)][PF6]2. The 1H NMR spectra indicate that L′ is chelated through S and N atoms with the formation of a four-membered ring. As a consequence, the ruthenium and sulfur atoms are stereogenic centers with ∆ and Λ and (R) and (S) configurations, respectively. NMR spectra, at low temperatures, show that two invertomers, of similar abundance, as enantiomeric couples ∆S, ΛR and ∆R, ΛS are present. In the methylene region, four AB systems are observed that in both the species contain two non-equivalent methylene groups. Variable-temperature NMR spectra and EXSY experiments show that the sulfur inversion produces an exchange between the invertomers. The one-dimensional band-shape analysis of the exchanging methylene signals showed that the energy barriers for the process are in the 43–52 kJ mol−1 range. The possible mechanisms of the sulfur inversion are discussed.  相似文献   

18.
通过2-甲酰基吡啶与胺缩合制得Schiff碱,经NaBH4还原得到四个N-(2-吡啶甲基)芳胺(芳基=苯基,邻甲氧基苯基,对甲苯基及2-吡啶基),得到的芳胺及N-(2-吡啶乙基)甲胺与三甲基镓反应生成相应的N-(2-吡啶基)伯胺·二甲基合镓(Ⅲ)配合物。用元素分析、红外光谱、质子核磁共振、质谱等手段对配合物进行了结构鉴定和表征。  相似文献   

19.
The reactions of perfluoro-3-isothiocyanato-2-methyl-2-pentene with PPh3 and P(NEt2)3 in the presence of NaBF4, KI, and NaBPh4 form phosphonium salts with the heterocyclic substituent (4E)-5,5-bis(trifluoromethyl)-4-(tetrafluoroethylidene)-4,5-dihydro-1,3-thiazol-2-yl, instead of involving desulfurization and formation of P-F-containing products. The reaction with tris(pentafluorophenyl)phosphine fails. The reactions with P(OEt)3 in the presence of ClSiMe3 or (CH3O)2POSiMe3 yield diethyl or dimethyl [(4E)-5,5-bis(trifluoromethyl)-4-(tetrafluoroethylidene)-4,5-dihydro-1,3-thiazol-2-yl]phosphonates and no intramolecular alkylation products. The 1H, 13C, 19F, and 31P spectra are presented, and the reaction pathways are discussed. Potential mechanisms of the biological and catalytic activity of the reaction products are considered.  相似文献   

20.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号