首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2‐Mercaptopyridine N ‐oxide (pyrithione, PTOH) along with several transition metal ions forms coordination compounds displaying notable biological activities. Gas‐phase complexes formed between pyrithione and manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) were investigated by infusion in the electrospray source of a quadrupole‐time of flight mass spectrometer. Remarkably, positive ion mode spectra displayed the singly charged metal adduct ion [C10H8MN2O2S2]2+ ([M(PTO)2]+• or [M(DPTO)]+•), where DPTO is dipyrithione, 2,2′‐dithiobis(pyridine N ‐oxide), among the most abundant peaks, implying a change in the oxidation state of whether the metal ion or the ligands. In addition, doubly charged ions were recognized as metal adduct ions containing DPTO ligands, [M(DPTO)n]2+. Generation of [M(PTO)2]+• / [M(DPTO)]+• could be traced by CID of [M(DPTO)2]2+, by observation of the sequential losses of a charged (PTO+) and a radical (PTO) deprotonated pyrithione ligand. The fragmentation pathways of [M(PTO)2]+• / [M(DPTO)]+• were compared among the different metal ions, and some common features were noticed. Density functional theory (DFT) calculations were employed to study the structures of the observed adduct ions, and especially, to decide in the adduct ion [M(PTO)2]+• / [M(DPTO)]+• whether the ligands are 2 deprotonated pyrithiones or a single dipyrithione as well as the oxidation state of the metal ion in the complex. Characterization of gas‐phase pyrithione metal ion complexes becomes important, especially taking into account the presence of a redox‐active ligand in the complexes, because redox state changes that produce new species can have a marked effect on the overall toxicological/biological response elicited by the metal system.  相似文献   

2.
Abstract

Potentiometric and polarographic studies of metal ion coordination with 9-hydroxypyrido[1,2-α]pyrimidin-4-one (HPP) with Ni(II), Zn(II), Co(II) and Cd(II) ions have been carried out. For comparison, stability constants with 8-hydroxy-imidazo[1,2-α]pyridine (HIP) were also measured. Due to the low solubility of the latter ligand complexes, measurements were made also in dioxan/water solutions. In the case of both ligands the coordination mode is the same. The oxine-like binding via {N, O?} donor set leads to formation of stable ML and ML2 complexes. Stability constants clearly indicate that both ligands are very effective and the HPP, having a more favourable position of the electron pair on nitrogen, forms stronger complexes with smaller metal ions i.e., Ni(II), Zn(II) and Co(II). Cd(II) is better fitted to the HIP donor set.  相似文献   

3.
The coordination chemistry of a series of bis-bidentate ligands with cadmium(II) ions has been investigated. The ligands, containing two N,S-donor chelating (pyrazolyl/thioether) fragments, have afforded complexes of a variety of structural types (dinuclear M2L2 ‘mesocate’ complexes, a one-dimensional chain coordination polymer and a simple mononuclear complex) according to whether the bis-bidentate ligands act as bridges spanning two metal ions, or a tetradentate chelate to a single metal ion. The p-phenylene and m-biphenyl spaced ligands L1 and L3 form dinuclear M2L2 complexes where the ligands are arranged in a ‘side-by-side’ fashion. In contrast the m-phenylene spaced ligand L2 forms a one-dimensional coordination polymer where the ligands adopt a highly folded conformation. The 1,8-naphthalene spaced ligand L4 adopts a tetradendate chelating mode and affords a simple mononuclear complex.  相似文献   

4.
To compare thermal stability of Co(II), Zn(II), and Cd(II) complexes with 4-CHO-5-MeIm, the two compounds of formula [MnL2(NO3)2] and [NiL3](NO3)2 have been prepared and structurally characterized. Elemental analysis and spectroscopic studies have confirmed a bidentate fashion of coordination of the ligand to Mn(II) and Ni(II) ions. IR and Raman spectra indicate that there are different coordination modes of the NO3 ? in compounds: non-coordinated and coordinated. The decomposition process of the studied complexes in nitrogen and argon (Ni(II) complex) atmosphere proceeds in three main stages, except Zn(II) complex, in temperature range 353?C1163?K. The final products of decomposition are CoO, MnO, Cd, ZnN4, NiN3. In addition, we have to admit that the different coordination mode of the NO3 ? ions in complexes: non-coordinated (in the (1), (4), and (5)) and coordinated (in the (2) and (3)) correlate with its thermal behavior. Thus, temperature ranges of its decompositions are observed: below 533?K and above 533?K, respectively. In Co(II), Mn(II), and Cd(II) complexes the fragments of N-donor atom-containing ligands decompose in the last stages, contrary to Zn(II) and Ni(II) compounds, in which metal ion surrounded by N atoms remains until the end. The course of pyrolysis and molecular structure of the complexes lead to the same conclusion about the strength of metal?Cligand bonds. On the basis of obtained results, it is concluded that the thermal stability of the studied compounds follows the order: (1)?<?(5)?<?(2)?<?(3)?<?(4).  相似文献   

5.
Four Co(III), Zn(II), Pd(II) and Cd(II) complexes with ligands derived in situ from acetylpyridine and ethyl hydrazinoacetate or hydrolysed ethyl hydrazinoacetate were prepared. An X-ray structural analysis showed that the Co(III) complex is octahedral with two tridentate (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetate (apha) ligands, each forming two five-membered rings with the metal ion. In the tetrahedral Zn(II) complex, only a single apha ligand was coordinated, in the same way as that in the Co(III) complex. In the case of the tetrahedral Cd(II) complex the non-hydrolysed form of (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetic acid ethyl ester (aphaoet) coordinated as a bidentate and the two remaining coordination sites were occupied by Cl? and CH3COO? ions. In addition, the square-planar neutral Pd(II) complex was synthesized, having the same bidentate as in the Cd(II) complex and two Cl? ions in the remaining coordination sites. Due to their being diamagnetic, all four complexes were characterized by 1H-NMR and 13C-NMR spectroscopy.  相似文献   

6.
Abstract

Adducts of theobromine (tbH) with 3d metal perchlorates (Mn+ = Cr3-. Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2- I here prepared by refluxing mixtures of the Iigand and a metal salt in ethyl acetate-triethyl orthoformate. The new complexes invariably involve 2: 1 molar ratios of tbH to metal ion and are apparently monomeric with terminal tbH ligands binding riaa ring nitrogen (N9 or Nl). The Mn2+, Cu2+ and Zn2- complexes are distorted tetrahedral, involving tuo tbH and two unidentate perchlorato ligands in the first coordination sphere of the metal ion. The remaining metal(II) complexes (Fe, Co, Ni) were obtained as monohydrates. These compounds are pentacoordinated of the [M(tbH)2(OClO3)2(OH2)] type, containing one aqua ligand in addition to the tbH and perchlorato ligands. The Cr3+ and Fe3+ complexes are low-symmetry hexacoordinated, with two tbH ligands. two unidentate and one bidentate chelating perchlorate Iigands.  相似文献   

7.
A series of new 3d metal complexes based on dimethyl pyridin-2-ylcarbamoylphosphoramidate (HL) was synthesized. The compounds with general formula M(HL)2Cl2·nH2O and M(L)2·nH2O (M=Co2+, Cu2+, Ni2+) were characterized by means of single-crystal X-ray analysis and IR spectroscopy. The organic ligands in all complexes are coordinated via oxygen atom of the carbonyl group and nitrogen atom of the heterocycle. The coordination environment of the central atoms is a distorted octahedron. The axial positions in the Co(II) and Ni(II) complexes with deprotonated ligands are occupied by water molecules. The Co(II) and Cu(II) complexes with phosphoryl ligands in a neutral form have different ligands in the axial positions: in the Co(II) complex, the positions are occupied by two water molecules, whereas in the Cu(II) complex, the positions are occupied by two chlorine anions. The structure of HL was experimentally and theoretically obtained by utilizing single-crystal X-ray analysis and DFT calculations. The computationally optimized geometric parameters for HL show a good agreement with the experimental results.  相似文献   

8.
Extraction behavior of some selected actinides like U(VI), Th(IV), and Am(III) was investigated with three different H-phosphine oxides, viz. diphenyl hydrogen phosphine oxide (DPhPO), dihexyl hydrogen phosphine oxide (DHePO) and diphenyl phosphite (DPP). The H-phosphine oxides exhibited a dual nature towards the extraction of actinides where the ligand not only extracts the metals by cation exchange but also by coordination with the phosphoryl group at lower and higher acidic concentrations, respectively. Among all ligands employed, DPhPO showed highest extraction with actinides with a substituent dependent trend as follows: DPhPO > DHePO > DPP. This trend emphasizes the importance of substituents around the phosphine oxide towards their extraction of actinides. The coordination behavior of DPhPO was studied by investigating its corresponding complexes with Th(NO3)4 and UO2(NO3)2. The metal complexes of these actinides were characterized using FT-IR, 1H and 31P NMR spectroscopic techniques. Density Functional Theory (DFT) calculations were also performed to understand the electronic and geometric structure of the ligand and the corresponding metal complexes.  相似文献   

9.
The reaction of cadmium(II) perchlorate with urocanic acid under different conditions created three novel coordination compounds: [Cd2(L2)2‐(L3)2(H2O)8] ( 1 ), {[Cd(L)(L2)](H2O)1/2}n ( 2 ), and {[Cd(L3)2](H2O)3/2(EtOH)}n ( 3 ), in which L, L2, and L3 are three urocanate tautomers. Complex 1 consists of two separate mononuclear units with different urocanate tautomers, which self‐assemble into a 3D hydrogen‐bonding network constructed by alternating 2D layers, whereas complexes 2 and 3 self‐assemble into 3D alpha‐polonium and four‐fold interpenetrated diamondoid networks, respectively. The tautomerism of the urocanate ligands and the enormous structural diversity of their complexes are present in this system, which illustrates that the reaction temperature, pressure, and the metal ions themselves act cooperatively to tune the tautomerism of the ligands and the frameworks of their metal coordination compounds. The fluorescence‐emission and nitrogen‐adsorption properties of these complexes are also investigated.  相似文献   

10.
The bis-Schiff bases of N2O2 dibasic ligands, H2La and H2Lb are synthesized by the condensation of ethylenediamine (a) and trimethylenediamine (b) with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one. The ligands are characterized using elemental analysis, IR, UV–Vis, 1H-NMR and mass spectroscopy. The ionization constant pKa values are determined spectrophotometrically. The 1H-NMR spectra of the ligands show the presence of phenolic coordinating groups. New complexes of H2La and H2Lb with metal ions Cr(III), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) are synthesized. Elemental analyses, infrared, ultraviolet-visible, electron spin resonance and thermal analysis, as well as conductivity and magnetic susceptibility measurements, are used to elucidate the structures of the newly prepared metal complexes. Thermal degradation studies for some complexes show that the final product is the metal oxide. A square planar geometry is suggested for the Cu(II), Zn(II) (for H2La and H2Lb) and Ni(II) (for H2La) complexes; an octahedral geometry for the Co(II), Cr(III), Fe(III) (for H2La and H2Lb), and Ni(II) (for H2Lb) complexes. The coordination sites are two azomethine nitrogens and two phenolic oxygens in the tetradentate Schiff bases.  相似文献   

11.
This paper presents examples of mixed-ligand Co(II), Cu(II), Ni(II) and Mn(II) complexes, with a distorted octahedral coordination geometry, with 2,2′-dipyridyl or 1,10-phenanthroline and phosphortriamide ligands. The complexes of the general type ML2·Lig (where M = Co(II), Cu(II), Ni(II), Mn(II); L = {Cl3C(O)NP(O)R2} (R = NHBz, NHCH2CHCH2, NEt2); Lig = 2,2′-dipyridyl or 1,10-phenanthroline) were synthesised and characterised by means of X-ray diffraction, IR and UV–Vis spectroscopy. The phosphortriamide ligands are coordinated via oxygen atoms of phosphoryl and carbonyl groups involved in six-membered metal cycles. The additional ligands 2,2′-dipyridyl or 1,10-phenanthroline are coordinated to the central atom, forming five-membered cycles.  相似文献   

12.
A series of eight coordination networks has been obtained by the self-assembly of the aryl azo imidazole based building block and with d10 metal [Zn(II), Cd(II), and Hg(II)] and counter anion (Cl, NO3, SCN) in order to rationalize the effect of coordination behavior of the metal ion, the size of the anions and the substitution effects of ligands upon the structure adopted by these metal complexes. Influences of halogen (Cl, Br, and I) substitutions are reflected in the precise molecular level architecture in the individual complexes. The parameters related to the coordination sphere depend on the metal-to-ligand ratios and are also influenced by the solvent of crystallization. A competition between the coordinating capabilities of the counter anion with ligands and its shape led to neutral and anionic metal complexes. Furthermore, various physicochemical studies viz. thermal behaviors, absorption spectra have been conducted to rationalize their structure in solution phase.  相似文献   

13.
This review describes the design of novel ion recognition systems based on salen (H2salen?=?N,N′-disalicylideneethylenediamine) or related ligands. The phenoxo groups of the salen-based metallohosts play an important role in the ion recognition because the phenoxo groups can further coordinate to metal ions in a bridging fashion. In particular, the integration of two or more salen-type coordination sites in a cyclic fashion is effective for the construction of the metallohosts. They show unique multi-metal complexation behavior and binding selectivities due to the phenoxo-bridged structures. The peripheral salen-type sites are suitable for binding to d-block transition metal ions and the central O6 (or larger) site is for the group 1–3 metals. Acyclic oligo(salen) molecules are also effective for obtaining metallohosts. The metalation of a bis(salen)-type ligand with d-block metals leads to a trinuclear complex with a C-shaped structure, which can selectively recognize Ca2+ and lanthanide(III) ions via a unique metal exchange process. The longer oligo(salen) ligands form a helical structure when they recognize the La3+ or Ba2+ ion in the presence of the zinc(II) ion. The helix inversion behavior of the helical metal complexes due to the labile character of the coordination bonds is successfully utilized for the dynamic helicity control. The transformation of the acyclic ligand into cyclic ones via olefin metathesis significantly changes the binding selectivity.  相似文献   

14.

The novel transition metal saccharinate complexes of triethanolamine (TEA) have been synthesized and characterized by elemental analyses, magnetic moments, UV-Vis and IR spectra. Mn(II), Co(II), Ni(II), Zn(II), Cd(II) and Hg(II) form mononuclear complexes of [M(TEA)2](SAC)2, where SAC is the saccharinate ion, while the Cu(II) complex is dimeric. The TEA ligand acts as a tridentate N,O,O'-donor ligand and one ethanol group is not involved in coordination. The SAC ion does not coordinate to the metal ions and is present as the counter-ion in the Mn(II), Co(II), Ni(II), Zn(II), Cd(II) and Hg(II) complexes, but coordinates to the Cu(II) ion as a monodentate ligand. The crystal structures of the [Co(TEA)2](SAC)2 and [Cu2(μ-TEA)2(SAC)2]·2(CH3OH) complexes were determined by single crystal x-ray diffraction. The Co(II) ion has a distorted octahedral coordination by two TEA ligands. The Cu(II) complex crystallizes as a dimethanol solvate and has doubly alkoxo-bridged centrosymmetric dimeric molecules involving two tridentate triethanolaminate (deprotonated TEA) and two monodentate SAC ligands. The geometry of each Cu(II) ion is a distorted square pyramid. Both crystal structures are stabilized by hydrogen bonds to form a three-dimensional network.  相似文献   

15.
Complexes that incorporate both ligand(s) and metal(s) exhibiting cytotoxic activity can especially be interesting to develop multifunctional drug molecules with desired activities. In this review, the limited number of solution results collected in our laboratory on the complexes of Pd(II) and two other platinum group metals—the half-sandwich type, [(η6-p-cym)Ru(H2O)3]2+, and [(η5-Cp*)Rh(H2O)3]2+—with hydroxamic acid derivatives of three amino acids, two imidazole analogues, and four small peptides are summarized and evaluated. Unlike the limited number of coordination sites of these metal ions (four and three for Pd(II) and the organometallic cations, respectively), the ligands discussed here offer a relatively high number of donor atoms as well as variation in their position within the ligands, resulting in a large versatility of the likely coordination modes. The review, besides presenting the solution equilibrium results, also discusses the main factors, such as (N,N) versus (O,O) chelate; size of chelate; amino-N versus imidazole-N; primary versus secondary hydroxamic function; differences between hydrolytic ability of the metal ions studied; and hydrolysis of the coordinated peptide hydroxamic acids in their Pd(II) complexes, which all determine the coordination modes present in the complexes formed in measurable concentrations in these systems. The options for the quantitative evaluation of metal binding effectivity and selectivity of the various ligands and the comparison with each other by using solution equilibrium data are also discussed.  相似文献   

16.
We have synthesized two ditopic ligands for selective extraction of copper(II) nitrate. We also synthesized one cation-only binding analog for comparison. All three ligands were characterized by conventional techniques. Competitive two-phase metal ion solvent extraction experiments were performed at 25 °C over a period of 24 h. These ligands showed significant selectivity for Cu(II) ions, having the ditopic ligands extract 81 and 73% of the Cu(II) ions in a solution of different metal ions {Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Pb(II)} at pH 5.09. Competitive transport experiments (water/chloroform/water) were undertaken employing each ligand separately as the ionophore in the membrane (chloroform) phase. No metal ion transport was observed, but a large concentration of Cu(II) was present in the membrane phase. Competitive anion extraction and transport were carried out with the ditopic ligands, yielding selective extraction and transport of nitrate. Furthermore, a pH isotherm of the best ditopic ligand (H2L2) with Cu(II) was determined from pH 1.0 to 6.0, producing a pH½ value of approximately 2.6. Finally, crystal structures of the ditopic ligands complexed with Cu(II) were determined and refined. The coordination geometry around the metal centers are distorted square planar and the Cu(II)-donor bond lengths fall within the normal range.  相似文献   

17.
Three coordination polymers, {[Cd(3‐bpd)2(NCS)2]×C2H5OH}n ( 1 ), {[Cd(3‐bpd)(dpe)(NO3)2]×(3‐bpd)}2 ( 2 ), {[Cd(dpe)2(NCS)2]×3‐bpd×2H2O}n ( 3 ) (3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene; dpe = 1,2‐bis(4‐pyridyl)ethane), were prepared and structurally characterized by a single‐crystal X‐ray diffraction method. In compound 1 , each Cd(II) ion is six‐coordinate bonded to six nitrogen atoms from four 3‐bpd and two NCS? ligands. The 3‐bpd acts as a bridging ligand connecting the Cd(II) ion to generate a 2D layered metal‐organic framework (MOF) by using a rhomboidal‐grid as the basic building units with the 44 topology. In compound 2 , the Cd(II) ion is also six‐coordinate bonded to four nitrogen atoms of two 3‐bpd, two dpe and two oxygen atoms of two NO3? ligands. The 3‐bpd and dpe ligands both adopt bis‐monodentate coordination mode connecting the Cd(II) ions to generate a 2D layered MOF by using a rectangle‐grid as the basic building units with the 44 topology. In compound 3 , two crystallographically independent Cd(II) ions are both coordinated by four nitrogen atoms of dpe ligands in the basal plane and two nitrogen atom of NCS? in the axial sites. The dpe acts as a bridging ligand to connect the Cd(II) ions forming a 2D interpenetrating MOFs by using a square‐grid as the basic unit with the 44 topology. All of their 2D layered MOFs in compounds 1 ‐ 3 are then arranged in a parallel non‐interpenetrating ABAB—packing manner in 1 and 2 , and mutually interpenetrating manner in 3 , respectively, to extend their 3D supramolecular architectures with their 1D pores intercalated with solvent (ethanol in 1 or H2O in 3 ) or free 3‐bpd molecules in 2 and 3 , respectively. The photoluminescence measurements of 1 ‐ 3 reveal that the emission is tentatively assigned to originate from π‐π* transition for 1 and 2 and probably due to ligand‐center luminescence for compounds 3 , respectively.  相似文献   

18.
The geometries and energetics of complexes of Hg(II) and Pb(II) with sulfur‐ and aminopyridine‐containing chelating resin including crosslinked polystyrene immobilizing 2‐aminopyridine via sulfur‐containing (PVBS‐AP), sulfoxide‐containing (PVBSO‐AP), and sulfone‐containing (PVBSO2‐AP) spacer arms have been investigated theoretically, and thus interactions of the metal ions with chelating resins were evaluated. The results indicate that PVBS‐AP behaves as a tridentate ligand to coordinate with the metal ions by S and two N atoms to form chelating compounds with S atom playing a dominant role in the coordination, whereas PVBSO‐AP and PVBSO2‐AP interact with metal cations, respectively, in a tricoordinate manner by O and two N atoms forming chelating complexes. Furthermore, it is revealed that O and N2 atoms of PVBSO‐AP are the main contributor of coordination to Hg(II), whereas N2 atom of PVBSO2‐AP is mainly responsible for the coordination to Hg(II). For PVBSO‐AP‐Pb2+ and PVBSO2‐AP‐Pb2+ complex, the coordination is dominated by the synergetic effect of N1, N2, and O atoms. Natural bond orbital and second‐order perturbation analyses suggest that the charge transfer from the chelating resins to metal ions is mainly dominated by the interactions of lone pair of electrons of the donor atoms with the unoccupied orbitals of metal ions. Hg(II) complexes exhibit larger binding energies than the corresponding Pb(II) complexes, implying the chelating resins exhibit higher affinity toward Hg(II), which is consistent with the experimental results. Combined the theoretical and experimental results, further understanding of the structural information of the complexes and the coordination mechanism was achieved. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
Investigation of the complexing of Na+, K+, Ca2+ and Ba2+ with some uncharged ligands by 13C-chemical shift and spin-lattice relaxation time measurements The influence of Na+, K+, Ca2+ and Ba2+ ions on 13C chemical shifts and on spin-lattice relaxation times of some electrically neutral ion carriers was investigated. In the solvents CD3CN and CD3OD and in presence of an excess of metal ions ligand 4 (see the Scheme) forms complexes of 1:1 stoichiometry. All four oxygen atoms of the ligand as well as solvent molecules take part in the coordination. In CDCl3 as solvent, for all ions investigated except sodium, only 1:2 complexes (metal/ligand) were observed with 4 . Sodium ions form both 1:1 and 1:2 complexes in this solvent. In the 1:2 complexes of the investigated monovalent ions only one, in those of the divalent ions both amide carbonyl groups of ligand 4 take part in the coordination.  相似文献   

20.
Summary Complexes (2 : 1) of diethyl benzoylphosphonate (debp) with 3d metal perchlorates were synthesized and characterized by means of i.r. and electronic spectral, magnetic susceptibility and conductance measurements. In new complexes of the types [M(debp)2(OClO3)(OH2)](ClO4) (M = Fe, Co, Zn) and [Fe(debp)2(OClO3)(OH2)](ClO4)2, both debp ligands function as bidentate chelating agents, coordinating through the P=O and C=O oxygens. In contrast, in the manganese(II) and nickel(II) complexes, which are of the [M(debp)2(OClO3)(OH2)2](ClO4) type, one debp acts as a bidentate chelating ligand, while the second debp is unidentate, coordinating only through the P=O oxygen. Hexacoordination in the new cationic complexes is completed by coordination of aqua and unidentate perchlorato ligands, which are in competition for sites in the inner coordination sphere of the central metal ion with the weak debp ligand. On the other hand, debp, owing to its bulkiness, and especially the presence of the benzoyl substituent, introduces sufficiently severe steric hindrance during coordination. As a result of this, the formation of [M(debp)3]n+ tris-chelate cationic complexes with the 3 d metal ions under study does not seem to be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号