首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
The steady shear viscosity η(k) and the stress decay function \documentclass{article}\pagestyle{empty}\begin{document}$ \tilde \eta \left({t,k} \right)$\end{document} (the shear stress divided by the rate of shear k after cessation of steady shear flow) were measured for concentrated solutions of polystyrene in diethyl phthalate. Ranges of molecular weight M and concentration c were 7.10 × 105 to 7.62 × 106 and 0.112–0.329 g/cm3, respectively. Measurements were performed with a rheometer of the cone-and-plate type in the range 10?4 < k < 1 sec?1. The Cox–Merz relation η(k) = |η*(ω)|ω=k was tested with the experimental result (|*(ω)| is the magnitude of the complex viscosity). It was found to be applicable to solutions of relatively low M or c but not to those of high M and c. For the latter η(k) began to decrease at a lower rate of shear than |η*(ω)|ω=k did; the Cox–Merz law underestimated the effect of rate of shear. The stress decay function was assumed to have a functional form \documentclass{article}\pagestyle{empty}\begin{document}$\tilde \eta \left( {t,k} \right) = \sum {\eta _p \left( k \right)e^{ - t/\tau p\left( k \right)} } $\end{document} where τ1 > τ2 > …, and the values of τ1, τ2 η1 and η2 were determined for some solutions. The relaxation times τ1 and τ2 were found to be independent of k and equal to the relaxation times of linear viscoelasticity. At the limit of k → 0, η1 and η2 were approximately 60 and 20–30%, respectively, of η and the non-Newtonian behavior was due to large decreases of η1 and η2 with increasing k. It was shown that η1(k) may be evaluated from the relaxation strength G1(s) for the longest relaxation time of the strain-dependent relaxation modulus with a constitutive model for relatively high cM systems as well as for low cM systems.  相似文献   

3.
Four samples containing 40, 60, 80, and 97 wt-% of poly(vinyl chloride), the rest being plasticizer and stabilizer, were tested by using the Weissenberg Rheogoniometer in the steady-shearing mode at temperatures between 155 and 235°C and rates of shear \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma = 0.01 - 400 $\end{document} sec?1. The viscosity η versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} follows Graessley's theoretical dependence for infinitely entangled system. The primary normal-stress difference coefficient ψ versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} is well described by the same theoretical function, used with the square of its argument. The temperature dependence of η0 and ψ0 shows discontinuities at T = Tb. The numerical values of Tb can be calculated from the theory of the melting point depression due to diluent. The activation energy of viscous flow Eη below Tb is 5–9 times as large as above this temperature. The activation energy of normal stress is found to be Eψ ≈ 5Eη. The characteristic relaxation times τo, ψp, calculated from superposition of η versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} and ψ versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} data, respectively, onto Graessley's master curves, and τN, computed from zero shear parameters η0 and ψ0, differ in their sensitivity to the melting of microcrystalline regions. It is postulated that in the systems investigated, aggregates with long lifetimes are being formed, increasing the effective molecular weight and introducing changes in the effective polydispersity.  相似文献   

4.
Kinetic and thermodynamic data for reaction (1) of certain C-centered aromatic radicals (referred to in this paper by the numbers I to X) in chlorobenzene: have been obtained. The k1 values of radicals varied between (1.1 ± 0.2) × 106M?1·sec?1 (radical VIII) and (3.6 ± 0.7) × 109M?1 sec?1 (radical VI) at 20°C. An investigation of the relationship between the recombination rates of radicals I–VIII and X and the solvent viscosity (mixture of toluene and dibutylphthalate, 0.6 < η < 18.4 cP) has shown that the recombination reactions involving radicals I–IV are limited by diffusion in solvents having a viscosity η> 10 cP and are activation reactions in solvents having a viscosity η < 10 cP. The recombination of radicals VIII and IX is an activation reaction, while that of radicals V–VII is diffusion-controlled in the entire viscosity range. The recombination of radical X is limited, in the viscosity range of 18.4 to 2 cP, by intrusion into the first coordination sphere of the partner, the effect of viscosity on the radical X recombination rate in the specified range being the same as its effect on diffusion-controlled reactions. The possible reasons of the discrepancies between the experimental fast recombination rate constants and the theoretical values calculated by the Debye–Smoluchowski theory are discussed. The equilibrium constant depends strongly on the nature of the substituent in the phenyl fragment: the substituents which increase unpaired electron delocalization in the radical intensify the dissociation of the respective dimer. Long-wave absorption bands have been recorded for radicals I–X and their extinction coefficients obtained. Dimers I–V are thermo- and photochromic compounds.  相似文献   

5.
The time—temperature superposition principle is well-established for linear viscoelastic properties of polymer systems. It is generally supposed that the same principle carries over into nonlinear phenomena, such as the relationship between viscosity η and shear rate \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document}. Guided by this principle and the forms of various molecular theories, one would expect that η—\documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document} data on the same polymer at different temperatures would superimpose when plotted as η/η0 versus \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma $\end{document}η0/ρT, η0 being the limiting viscosity at low shear rates, ρ the polymer density, and T the absolute temperature. Data on polystyrene melts, obtained in a plate-cone viscometer, appear systematically to violate this principle in the range 140–190°. Such anomalies are absent in concentrated solutions of polystyrene. The trends are similar to those reported by Plazek in the steady-state compliance of polystyrene melts near Tg, but they appear to persist to higher temperatures than the compliance anomaly.  相似文献   

6.
Some results are reported on the linear viscoelastic properties of polybutadienes with narrow-molecular-weight distributions. The zero shear viscosity η0 varies as M3.4 in the linear samples, and viscosity enhancement is found in star-branched samples with long arms, in good agreement with results reported earlier by Kraus and Gruver. The temperature coefficient of viscosity appears to be slightly larger in stars when the arms become long. The steady state recoverable compliance J is 2.1 × 10 ?7 cm2/dyn in linear samples of high molecular weight, but it increases to values as much as 10 times larger in the stars. The plateau modulus G, obtained from a composite curve for the linear samples, is 1.32 × 107 dyn/cm2. The terminal relaxation spectrum of the stars is too broad to allow an evaluation of plateau modulus.  相似文献   

7.
The fluorescence kinetics and polarization anisotropy of the triphenylmethane dye malachite green were measured as a function of solvent viscosity. The relationshp between the relaxation kinetics and the solvent viscosity was investigated in order to obtain information on the effect of enviromnental changes on the orientational order of dye molecules in solution. It was found that the fluorescence lifetimes follow an η23 dependence for 1 < η < 60 P, η12 dependence for 60 P < η < 1000 P and approach a constant for η > 1000 P. The dependence of the fluorescence decay rates on the solvent viscosity was fit to k = 5 × 1010η?23 + 5 × 108 s?1. The fluorescence polarization anisotropy term, R(0), was also measured as a function of solvent viscosity. A marked decrease in R(0) was observed at a viscosity of 1000 P. For η < 1000 P, R(0) was found to be close to the expected value for a random distribution of molecules, 0.4; and for η > 3000 P, R(0) was measured to be ≈0.11. This small value of R(0) may indicate a nonrand The observed change of the polarization anisotropy with increasing viscosity indicates that the dye molecules become ordered at higher viscosities. This may arise through the formation of a long range order due to lack of rotational deexcitation of the malachite green dye molecules at high viscosities.  相似文献   

8.
A thermoplastic urethane elastomer prepared from a polycaprolactone diol, 4,4′-diphenylmethane diisocyanate, and 1,5-pentanediol was fractionated and the solution properties of the fractions were characterized in terms of viscosity and sedimentation. Mark-Houwink relations were established for data obtained at 30° in various solvents: In dimethylacetamide, tetramethylurea, and N-methyl pyrrolidone, the value of Kθ increased systematically in the range (1.7 to 2.0) × 10?3. Lower values of Kθ were obtained in dimethylformamide (0.8 × 10?3) and meta-cresol (0.9 × 10?3). The molecular expansion coefficients in the various solvents were approximated from the experimental viscosity data. Short-range interactions between the solvent molecules and polymer chains are suggested as possible causes for differences in the hydrodynamic parameters.  相似文献   

9.
Data on the viscosity η of moderately concentrated solutions of polystyrene are reported. Several solvents were investigated, including cyclopentane solutions over a temperature span between θU = 19.5°C and θL = 154.5°C. The data were analyzed in terms of a relation giving η as a function of αφM, where αφ is the expansion factor for the chain dimensions in a solution with volume fraction φ of polymer with molecular weight M. It is shown that values of αφ so determined decrease as ? lnαφ/? lnφ = (1 ? 2μ)/6μ for φ greater than φ* = 0.2M/s3 for moderately concentrated solutions, where s is the root-mean-square radius of gyration and μ = ? ln[η]/? lnM with [η] the intrinsic viscosity.  相似文献   

10.
The reaction \documentclass{article}\pagestyle{empty}\begin{document}${\rm Br} + {\rm CH}_3 {\rm CHO}\buildrel1\over\rightarrow{\rm HBr} + {\rm CH}_3 {\rm CO}$\end{document} has been studied by VLPR at 300 K. We find k1 = 2.1 × 1012 cm3/mol s in excellent agreement with independent measurements from photolysis studies. Combining this value with known thermodynamic data gives k-1 = 1 × 1010 cm3/mol s. Observations of mass 42 expected from ketene suggest a rapid secondary reaction: in which step 2 is shown to be rate limiting under VLPR conditions and k2 is estimated at 1012.6 cm3/mol s from recent theoretical models for radical recombination. It is also shown that 0 ? E1 ? 1.4 kcal/mol using theoretical models for calculation of A1 and is probably closer to the lower limit. Reaction ?1 is negligible under conditions used.  相似文献   

11.
The dynamic moduli G′(ω) and G″(ω) for two groups of linear polyethylene fractions (reported M w/M n < 1.2) were measured in the melt state using the eccentric rotating disk method. Values of zero shear viscosity η0 were obtained and compared with published results on similar fractions. Molecular weight data were converted to a common basis through intrinsic viscosities in trichlorobenzene (TCB) at 135°C. With recent data on M w (light scattering) vs. [η]TCB, for linear polyethylene, the relationship at 190°C, η0 = 3.40 × 10?14(M w)3.60, was obtained. The flow activation energy Ea was 6.4 kcal (T = 140–195°C). The plateau modulus G at 190°C was determined from the area under the loss modulus peak in one high-molecular-weight sample. The value obtained, G = 1.58 × 107 dyn/cm2, corresponds to an apparent molecular weight between entanglements of 1850. The storage compliance J′(ω) becomes anomalously large at low frequencies. The recoverable compliance J could not be determined for any of the fractions.  相似文献   

12.
The rate of decomposition of isopropyl nitrite (IPN) has been studied in a static system over the temperature range of 130–160°C. For low concentrations of IPN (1–5 × 10?5M), but with a high total pressure of CF4 (~0.9 atm) and small extents of reaction (~1%), the first-order rates of acetaldehyde (AcH) formation are a direct measure of reaction (1), since k3 » k2(NO): \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$ {\rm IPN}\begin{array}{rcl} 1 \\ {\rightleftarrows} \\ 2 \\ \end{array}i - \Pr \mathop {\rm O}\limits^. + {\rm NO},i - \Pr \mathop {\rm O}\limits^. \stackrel{3}{\longrightarrow} {\rm AcH} + {\rm Me}. $\end{document} Addition of large amounts of NO (~0.9 atm) in place of CF4 almost completely suppressed AcH formation. Addition of large amounts of isobutane – t-BuH – (~0.9 atm) in place of CF4 at 160°C resulted in decreasing the AcH by 25%. Thus 25% of \documentclass{article}\pagestyle{empty}\begin{document}$ i - \Pr \mathop {\rm O}\limits^{\rm .} $\end{document} were trapped by the t-BuH (4): \documentclass{article}\pagestyle{empty}\begin{document}$ i - \Pr \mathop {\rm O}\limits^. + t - {\rm BuH} \stackrel{4}{\longrightarrow} i - \Pr {\rm OH} + (t - {\rm Bu}). $\end{document} The result of adding either NO or t-BuH shows that reaction (1) is the only route for the production of AcH. The rate constant for reaction (1) is given by k1 = 1016.2±0.4–41.0±0.8/θ sec?1. Since (E1 + RT) and ΔH°1 are identical, within experimental error, both may be equated with D(i-PrO-NO) = 41.6 ± 0.8 kcal/mol and E2 = 0 ± 0.8 kcal/mol. The thermochemistry leads to the result that \documentclass{article}\pagestyle{empty}\begin{document}$ \Delta H_f^\circ (i - {\rm Pr}\mathop {\rm O}\limits^{\rm .} ) = - 11.9 \pm 0.8{\rm kcal}/{\rm mol}. $\end{document} From ΔS°1 and A1, k2 is calculated to be 1010.5±0.4M?1·sec?1. From an independent observation that k6/k2 = 0.19 ± 0.03 independent of temperature we find E6 = 0 ± 1 kcal/mol and k6 = 109.8+0.4M?;1·sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$ i - \Pr \mathop {\rm O}\limits^. + {\rm NO} \stackrel{6}{\longrightarrow} {\rm M}_2 {\rm K} + {\rm HNO}. $\end{document} In addition to AcH, acetone (M2K) and isopropyl alcohol (IPA) are produced in approximately equal amounts. The rate of M2K formation is markedly affected by the ratio S/V of different reaction vessels. It is concluded that the M2K arises as the result of a heterogeneous elimination of HNO from IPN. In a spherical reaction vessel the first-order rate of M2K formation is given by k5 = 109.4–27.0/θ sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm IPN} \stackrel{5}{\longrightarrow} {\rm M}_2 {\rm K} + {\rm HNO}. $\end{document} IPA is thought to arise via the hydrolysis of IPN, the water being formed from HNO. This elimination process explains previous erroneous results for IPN.  相似文献   

13.
Polymerization of 4-methyl-2-oxetanone ( 1 ) initiated with potassium acetate-dibenzo-18-crown-6 complex ( 2 ) in THF as solvent, was studied. Transfer reactions, leading to both crotonate anions and carboxylic acid formation, have been observed. Two kinetic effects of these reactions, hampering the living polymerization, have been established. The first results from reinitiation with the crotonate anions and thereby lowers the polymer molecular weight. The second is the decrease in the overall polymerization rate due to complexation of the growing carboxylate anions with carboxylic acid moieties. Kinetic scheme of polymerization involves propagation accompanied by transfer followed by slow reinitiation. This scheme, including complexation of the active species has been solved numerically. The apparent rate and equilibrium constants (kp, ktr, kri, and Kass and respectively) have been determined. Although these kinetic parameters depend strongly on the polymerization conditions, but the ratio of the rate constants kp : kt : kri is fairly constant and equal to 10−4 : 10−6 : 10−6, respectively (at 20°C). Conditions of the controlled anionic synthesis of the amorphous poly(4-methyl-2-oxetanone) with $\bar M_n$ as high as 1.7 × 104 and ${{ \le \bar M_n } \mathord{\left/ {\vphantom {{ \le \bar M_n } {\bar M_n }}} \right. \kern-\nulldelimiterspace} {\bar M_n }} \le 1.20$ have also been elaborated.  相似文献   

14.
Vapor sorption isotherms in binary solutions of polyisobutylene (PIB), (Mη = 4.7 × 106 g/mol) in hydrocarbons (cyclopentane; cyclohexane; n-heptane; 2,2-dimethyl butane; and 2,2,4-trimethyl pentane) and chlorinated methanes [carbon tetrachloride (CCI4) and chloroform (CHCI3)] have been determined at 23.5°C using the piezoelectric sorption method. The polymer-solvent interaction parameter χ obtained agrees with previously published values determined by using gas-liquid chromatography and a quartz-helix vapor sorption apparatus. The Flory theory of corresponding-states has been applied to the experimental results through the χ parameter and affords a good prediction of the concentration dependence of χ for solutions of chloroform, carbon tetrachloride, n-heptane, and 2,2-dimethyl butane in PIB. The experimental values of \documentclass{article}\pagestyle{empty}\begin{document}$ [\partial (a_1 /\psi _1 )/\partial a_1 ]_{T,P} $\end{document} for the PIB solutions are constant over the measured concentration range, for example \documentclass{article}\pagestyle{empty}\begin{document}$ [\partial (a_1 /\psi _1 )/\partial a_1 ]_{T,P} $\end{document} = ?4.1 for CCI4, ?3.65 for CHCI3, ?3.0 for 2,2-dimethyl butane and n-heptane, ?2.7 for 2,2,4-trimethyl pentane, ?2.7 for cyclohexane, and ?1.7 for cyclopentane, where a1 is the solvent activity and ψ1 is the solvent segment fraction. The correlations between the values of \documentclass{article}\pagestyle{empty}\begin{document}$ [\partial (a_1 /\psi _1 )/\partial a_1 ]_{T,P} $\end{document} and the theories of Guggenheim, Miller, Huggins, and Flory are discussed.  相似文献   

15.
Extensional tests at constant strain rate \documentclass{article}\pagestyle{empty}\begin{document}$ \dot \varepsilon $\end{document} have been carried out on polystyrene melts with different molecular weight distributions at various temperatures and strain rates. The true tensile stress is found to be well approximated by the sum of two contributions: (1) a neo-Hookean expression involving the recoverable strain and (2) a contribution rapidly reaching a steady-state value. Two experimental parameters can be defined: an elasticity modulus \documentclass{article}\pagestyle{empty}\begin{document}$ G(\dot \varepsilon ) $\end{document} from (1) and a viscosity \documentclass{article}\pagestyle{empty}\begin{document}$ \eta _{\rm v} (\dot \varepsilon ) $\end{document} from (2). It is further shown that time-temperature equivalence applies not only to the stress but also to the recoverable strain and to G and ηv. The dependence of G and ηv on strain rate is then discussed. For high strain rates, G is close to the linear viscoelastic plateau modulus of PS melts and decreases with decreasing strain rate. The value of ηv is found to a good approximation to be equal to three times the shear viscosity taken at a shear rate equivalent to the elongational strain rate.  相似文献   

16.
The rate of decomposition of methyl nitrite (MN) has been studied in the presence of isobutane-t-BuH-(167-200°C) and NO (170-200°C). In the presence of t-BuH (~0.9 atm), for low concentrations of MN (~10?4M) and small extents of reaction (4-10%), the first-order homogeneous rates of methanol (MeOH) formation are a direct measure of reaction (1) since k4(t-BuH) »k2(NO): . The results indicate that the termination process involves only \documentclass{article}\pagestyle{empty}\begin{document}$ t - {\rm Bu\, and\, NO:\,\,}t - {\rm Bu} + {\rm NO\stackrel{e}{\longrightarrow}} $\end{document} products, such that ke ~ 1010 M?1 ~ sec?1.Under these conditions small amounts of CH2O are formed (3-8% of the MeOH). This is attributed to a molecular elimination of HNO from MN. The rate of MeOH formation shows a marked pressure dependence at low pressures of t-BuH. Addition of large amounts of NO completely suppresses MeOH formation. The rate constant for reaction (1) is given by k1 = 1015.8°0.6-41.2°1/· sec?1. Since (E1 + RT) and ΔHΔ1 are identical, within experimental error, both may be equated with D(MeO - NO) = 41.8 + 1 kcal/mole and E2 = 0 ± 1 kcal/mol. From ΔS11 and A1, k2 is calculated to be 1010.1°0.6M?1 · sec?1, in good agreement with our values for other alkyl nitrites. These results reestablish NO as a good radical trap for the study of the reactions of alkoxyl radicals in particular. From an independent observation that k6/k2 = 0.17 independent of temperature, we conclude that \documentclass{article}\pagestyle{empty}\begin{document}$ E_6 = 0 \pm 1{\rm kcal}/{\rm mol\, and\,}\,k_6 = 10^{9.3} M^{- 1} \cdot {\rm sec}^{- 1} :{\rm MeO} + {\rm NO}\stackrel{6}{\longrightarrow}{\rm CH}_2 {\rm O} + {\rm HNO} $\end{document}. From the independent observations that k2:k2→: k6→ was 1:0.37:0.04, we find that k2→ = 109.7M?1 ? sec?1 and k6→ = 108.7M?1 ? sec?1. In addition, the thermodynamics lead to the result In the presence of NO (~0.9 atm) the products are CH2O and N2O (and presumably H2O) such that the ratio N2O/CH2O ~ 0.5. The rate of CH2O formation was affected by the surface-to-volume ratio s/v for different reaction vessels, but it is concluded that, in a spherical reaction vessel, the CH2O arises as the result of an essentially homogeneous first-order, fourcenter elimination of \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm HNO}:{\rm MN\stackrel{5}{\longrightarrow}CH}_{\rm 2} {\rm O} + {\rm HNO} $\end{document}. The rate of CH2O formation is given by k5 = 1013.6°0.6-38.5-1/? sec?1.  相似文献   

17.
A computerized method is given for the evaluation of Arrhenius parameters which describe the chemiluminescent decomposition of tetramethyl-1,2-dioxetane. The parameters were determined in several solvents by linear regression methods and the equation ln ln \documentclass{article}\pagestyle{empty}\begin{document}$ [(\sum\nolimits_0^\infty I - \sum\nolimits_0^t I)/(\sum\nolimits_0^\infty I - \sum\nolimits_0^t I - \sum\nolimits_0^{t + \Delta t} I)] = \ln\, (A_1 \Delta t) - E_1 /RT$\end{document}, where I refers to photons counted by increments of Δt, and E1 and A are the first-order Arrhenius parameters. The average of E1 and log A1 (s?1) from this method from six runs in CCl4 with initial concentrations of 4.9 × 10?5-8.45 × 10?4M were 27.21 ± 0.88 kcal/mol (113.7 ± 3.7 kJ/mol) and 13.88 ± 0.50, respectively. Simulated curves of chemiluminescence versus time were obtained with the use of a computer program and an auxiliary plotter.  相似文献   

18.
Data are presented to show that two correlations of viscosity–concentration data are useful representations for data over wide ranges of molecular weight and up to at least moderately high concentrations for both good and fair solvents. Low molecular weight polymer solutions (below the critical entanglement molecular weight Mc) generally have higher viscosities than predicted by the correlations. One correlation is ηsp/c[η] versus k′[η], where ηsp is specific viscosity, c is polymer concentration, [η] is intrinsic viscosity, and k′ is the Huggins constant. A standard curve for good solvent systems has been defined up to k′[η]c ≈? 3. It can also be used for fair solvents up to k′[η]c ≈? 1.25· low estimates are obtained at higher values. A simpler and more useful correlation is ηR versus c[η], where ηR is relative viscosity. Fair solvent viscosities can be predicted from the good solvent curve up to c[η] ≈? 3, above which estimates are low. Poor solvent data can also be correlated as ηR versus c[η] for molecular weights below 1 to 2 × 105.  相似文献   

19.
n-C3H7ONO was photolyzed with 366 nm radiation at ?26, ?3, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yields of C2H5CHO, C2H5ONO, and CH3CHO were measured as a function of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.38 ± 0.04 independent of temperature. The n-C3H7O radicals can react with NO by two routes The n-C3H7O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.0 ± 0.2) × 1014, (3.1 ± 0.6) × 1014, and (1.4 ± 0.1) × 1015 molec/cm3 at 55, 88, and 120°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?26 to 88°C. They fit the Arrhenius expression: For k2 ? 4.4 × 10?11 cm3/s, k6 becomes (2.9 ± 1.7) × 10?13 exp{?(879 ± 117)/T} cm3/s. The reaction scheme also provides k4b/k6 = 1.58 × 1018 molec/cm3 at 120°C and k8a/k8 = 0.56 ± 0.24 independent of temperature, where   相似文献   

20.
By using isobutane (t-BuH) as a radical trapit has been possible to study the initial step in the decomposition of dimethyl peroxide (DMP) over the temperature range of 110–140°C in a static system. For low concentrations of DMP (2.5 × 10?5?10?4M) and high pressures of t?BuH (~0.9 atm) the first-order homogeneous rate of formation of methanol (MeOH) is a direct measure of reaction (1): \documentclass{article}\pagestyle{empty}\begin{document}${\rm DMP}\mathop \to \limits^1 2{\rm Me}\mathop {\rm O}\limits^{\rm .},{\rm Me}\mathop {\rm O}\limits^{\rm .} + t{\rm - BuH}\mathop \to \limits^4 {\rm MeOH} + t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u}$\end{document}. For complete decomposition of DMP in t-BuH, virtually all of the DMP is converted to MeOH. Thus DMP is a clean thermal source of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}. In the decomposition of pure DMP complications arise due to the H-abstraction reactions of Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document} from DMP and the product CH2O. The rate constant for reaction (1) is given by k1 = 1015.5?37.0/θ sec?1, very similar to other dialkyl peroxides. The thermochemistry leads to the result D(MeO? OMe) = 37.6 ± 0.2 kcal/mole and /H(Me\documentclass{article}\pagestyle{empty}\begin{document}$\mathop {\rm O}\limits^{\rm .}$\end{document}) = 3.8 ± 0.2 kcal/mole. It is concluded that D(RO? OR) and D(RO? H) are unaffected by the nature of R. From ΔS and A1, k2 is calculated to be 1010.3±0.5 M?1· sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2{\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^2 {\rm DMP}$\end{document}. For complete reaction, trace amounts of t-BuOMe lead to the result k2 ~ 109 M?1 ·sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - Bu}\mathop \to \limits^5$\end{document} products. From the relationship k6 = 2(k2k5a)1/2 and with k5a = 108.4 M?1 · sec?1, we arrive at the result k6 = 109.7 M?1 · sec?1: \documentclass{article}\pagestyle{empty}\begin{document}$2t{\rm - u}\mathop {\rm B}\limits^{\rm .} \to (t{\rm - Bu)}_{\rm 2}{\rm,}t{\rm -}\mathop {\rm B}\limits^{\rm .} {\rm u} + {\rm Me}\mathop {\rm O}\limits^{\rm .} \mathop \to \limits^6 t{\rm - BuOMe}$\end{document}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号