首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Summary Reaction of one mole of acetylacetone with two moles of 4-phenylthiosemicarbazide yields the unusual Schiff base, MeC(=N-NHCSNHPh)CH2C(=NNHCSNHPh)Me. APT = H2L) acetylacetone bis(4-phenylthiosemicarbazone). The complexes of CoII, NiII, CuII, ZnII and UVIO2 have been prepared and characterized by analytical, i.r., electronic spectral and magnetic measurements. The CoII, NiII and CuII complexes have been assigned square-planar stereochemistry on the basis of magnetic and spectroscopic studies. The ligand is a neutral or dibasic quadridentate SNNS donor as revealed by i.r. spectral studies.  相似文献   

2.
A novel tetradentate N2O2 type Schiff base, synthesized from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one(4-aminoantipyrine) and 3-salicylidene-acetylacetone, forms stable complexes with transition metal ions such as Cu II , Ni II , Co II and Zn II in ethanol. Microanalytical data, magnetic susceptibility, IR, UV-Vis.,1H-NMR, ESR and Mass spectral techniques were used to confirm the structures. Electronic absorption spectra of the complexes suggest a square-planar geometry around the central metal ion. These complexes show higher conductance values, supporting their electrolytic nature. The monomeric nature of the complexes was confirmed from their magnetic susceptibility values. Cyclic voltammogram of the copper(II) and nickel(II) complexes in DMSO solution at 300 K were recorded and the results are discussed. The X-band ESR spectra of the copper complex were recorded and the molecular orbital coefficient values were calculated from the spectra. The in vitro antimicrobial activities of the investigated compounds were tested against bacteria such as Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis and Escherichia coli and fungi like Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates show higher antimicrobial activity for the above microorganisms than that of the free ligand.  相似文献   

3.
EPR Investigations on a Copper Chelate of anα-Cyano-β-amino-dithioacryl Acid Ester EPR studies on copper(II) chelates of anα-cyano-β-amino-dithioacryl acid ester are reported. The EPR spectra were obtained from solutions, diamagnetically diluted powders, and single-crystals which are stable for a short time only. The corresponding nickel(II) chelate was used as host lattice. The 14N ligand hyperfine structure observed in the spectra is in agreement with a [CuN2S2] coordination sphere. In some orientations of the recorded angular dependencies the EPR spectra show a hyperfine splitting due to the interaction of the unpaired electron with the N? H protons. In addition spin flip satellite lines are observed in the single-crystal spectra. The g, ACu and AN tensors obtained from the powder and single-crystal spectra have an axial symmetry within the experimental errors. The unpaired electron occupies a MO which consists mainly of the copper 3dxy and the corresponding donor atom orbitals. The co-valency of the metal ligand bond is very high.  相似文献   

4.
Structure Reactivity Correlations in Coordinatively Unsaturated Chelate Complexes. IV. Reaction of Dioxygen with Cobalt(II) Chelates of Tridentate Di-anionic Schiff Base Ligands The high-spin cobalt(II) chelates 3 form with pyridine isolable adducts which are also high-spin complexes. In the case 3 b a low-spin mono-adduct is indicated by ESR spectroscopy, which is changed time-dependently into a stable quadratic-pyramidal form. With 1, 10-phenanthroline 3 b forms a low-spin mono-adduct. The spectrophotometric titration of 3 d with pyridine indicates an equilibrium A + 2 Py ? APy22 = 0,36 M?2) where A represents probably the tetrameric form of 3 d . In pyridine, 3 a , 3 b , and 3 d react with O2 in an 1:1 ratio; 3 c binds O2 in the ratio 2:1. The formation of superoxo complexes is indicated by ESR spectroscopy for the complexes 3 a , 3 b , and 3 d . 3 b reacts with O2 in piperidine to give the free superoxide ion. In n-butylamine a species is formed which seems to be an ion pair with direct interactions between the free O2? ion and the coordinated amine nitrogen.  相似文献   

5.
Summary Complexes of the type M(AcLeu)2 · B2 (M = CoII, NiII or ZnII; B = H2O, py, 3-pic, 4-pic; AcLeu =N-acetyl-DL-leucinate ion) and M(AcLeu)2 B (M = CoII or ZnII and B = o-phen) were prepared and investigated by means of magnetic and spectroscopic measurements. The i.r. spectra of all the complexes are consistent with bidentate coordination of the amino acid to the metal ion. The room temperature solid state electronic spectra indicate that the symmetry of this species is closer toD 4h and that MO6 and MO4N2 chromophores are present in the M(AcLeu)2 · 2 H2O and M(AcLeu)2Bn · x H2O (B = py, 3-pic, 4-pic, n=2 and x=0 for M = NiII; B = o-phen, n=1 and x=0 for M = CoII; B = py, 3-pic, 4-pic, n=1 and x=1 for M = CoII) complexes, respectively. By comparing the Dq values of the amino acid and those of other N-substituted amino acids previously studied, a spectrochemical series of the the cobalt(II) and nickel(II) complexes is proposed. The1 H n.m.r. spectra of the zinc(II) complexes confirm the proposed stereochemistry.  相似文献   

6.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

7.
Three new CoII coordination polymers, namely [Co(DNBA)2(pbdmbm)] (1), [Co2(H2O)2(DNBA)2(ebdmbm)2] (2) and [Co2(DNBA)2(pbbm)2] (3) have been obtained by hydrothermal reactions of CoII with flexible bis(benzimidazole) ligands [1,1′-(1,3-propanediyl)bis(5,6-dimethylbenzimidazole) (pbdmbm), 1,1′-(1,2-ethanediyl)bis(5,6-dimethylbenzimidazole) (ebdmbm), 1,1′-(1,3-propanediyl)bis(benzimidazole) (pbbm)] plus 3,5-dinitrobenzoic acid (HDNBA). The complexes have been characterized by single crystal X-ray diffraction, elemental analyses, IR and TG. Complexes 1 and 3 exhibit one-dimensional chains composed of CoII centers bridged by flexible bis(benzimidazole) ligands. Complex 2 is a three-dimensional NaCl-type supramolecular framework constructed from binuclear units, which are formed by two CoII centers and two ebdmbm ligands. The spacer length and substituents on the bis(benzimidazole) ligands are crucial for the construction of these structures. The photoluminescence properties of the complexes and the cyclic voltammetry behavior of complex 1 are described.  相似文献   

8.
Mononuclear copper(II) and trinuclear cobalt(II) complexes, namely [Cu(L1)]2 · CH2Cl2 and [{Co(L2)(EtOH)}2Co(H2O)] · EtOH {H2L1 = 4,6‐dichloro‐6′‐methyoxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol and H3L2 = 6‐ethyoxy‐6′‐hydroxy‐2,2′‐[1,1′‐(ethylenedioxydinitrilo)dimethylidyne]diphenol}, were synthesized and characterized by elemental analyses, IR and UV/Vis spectroscopy, and single‐crystal X‐ray diffraction. In the CuII complex, the CuII atom is four‐coordinate, with a N2O2 coordination sphere, and has a slightly distorted square‐planar arrangement. Interestingly, the obtained trinuclear CoII complex is different from the common reported 2:3 (L:CoII) salamo‐type CoII complexes. Infinite 2D layer supramolecular structures are formed via abundant intermolecular hydrogen bonding and π ··· π stacking interactions in the CuII and CoII complexes.  相似文献   

9.
Summary Metal(II) bis-chelates of the type ML2nB [M=CoII, NiII, and CuII, L=1-hydroxy-2-naphthyl(4-X-styryl)ketone, (X=H, Me, Cl, MeO), B=H2O, Py; n=0, 2] have been prepared and characterised by element analyses, i.r., ligand field spectra, magnetic moments and thermal studies. The copper(II) chelates are anhydrous monomers oftrans-square-planar configuration. The cobalt(II) and nickel(II) chelates, obtained as dihydrates, possess a high-spintrans-octahedral structure. Their anhydrides are polymeric. All the pyridine adducts have high-spintrans-octahedral geometry. The (M–O), order, namely Cu >Ni>Co, parallels the Irving-Williams order. The weak ligand field strength of 1-hydroxy-2-naphthyl(4-X-styryl)ketones is ascribed to inhibition of extensive conjugation arising from deviation of the naphthoyl group from planarity.  相似文献   

10.
1-Ethoxycarbonyl-3-ferrocenyl-propane-1,3-dion and Ferrocene-1,1′bis(2,4-dioxobutanoic acid ethylester) as Ligands for Transition Metal Ions. Crystal Structure of Bis(1-ethoxycarbonyl-3-ferrocenyl-propane-1,3dionato)copper(II) The ligands 1-ethoxycarbonyl-3-ferrocenyl-propane-1,3-dion and ferrocene-1,1′-bis(2,4-dioxo-butanoic acid ethylester) have been prepared by reaction of acetylferrocene or 1,1′-diacetylferrocene and diethyl oxalate. They yield neutral chelates with CuII, NiII, ZnII, CoII, and MnII. The acid dissociation constants of the ligands and the stability constants of their metal complexes including FeII complexes are reported. The structure of bis(1-ethoxycarbonyl-3-ferrocenyl-propane-1,3-dionato)copper(II) was determined by X-ray structure analysis. A cis arrangement with a nearly square planar coordination sphere at the Cu atom is found.  相似文献   

11.
The synthesis and molecular structure of trans‐{bis[(acetato‐κO)‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 4 ) and cis‐{bis[chlorido‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 5 ) is reported. Both neutral chelate complexes are prepared from the corresponding CoII salt [CoX2; X = OAc ( 1 ), Cl ( 2 )] and 2‐(1‐aziridinyl)ethanol (azolH, 3 ) in dry dichloromethane. A third, ionic complex, cis‐{bis[aqua‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) diacetate ( 6 ) is formed from 4 in the presence of water and could be crystallized from aqueous dichloromethane. In all cases, 2‐(1‐aziridinyl)ethanol is coordinating as bidentate chelate ligand by the nitrogen and oxygen atom of the aziridinyl and hydroxy moiety. After purification, the compounds have been fully characterized using IR spectroscopy and FAB+‐MS. The single‐crystal X‐ray structure analysis revealed a distorted octahedral geometry for all complexes with either trans ( 4 ) or cis ( 5 , 6 ) configuration.  相似文献   

12.
Reaction of the potassium salt of N‐thiophosphorylthiourea tBuNHC(S)NHP(S)(OiPr)2 ( HL ) with ZnII, CdII, NiII and CoII in aqueous EtOH leads to complexes of common formula M(L‐S,S′)2 ( ML2 ). Complexes were investigated by IR, UV‐Vis, 1H and 31P{1H} NMR spectroscopy and microanalysis The structure of complex NiL2 was investigated by single crystal X‐ray diffraction analysis. The nickel(II) ion has a squre‐planar environment, S4, with two anionic ligands involving 1,5‐S,S′‐coordination mode. The ligands are bound in a trans configuration.  相似文献   

13.
Summary The title complexes [ML2]n+=CoIII, CuII, NiII; L=1-thia-4,7-diazacyclononane-S-oxide) have been prepared and characterized spectroscopically. The sulphoxide group is coordinated through the oxygen atom and the complexes have atrans-O,O geometry. The nickel(II) complex of bis(2-amino-ethyl)sulphoxide has also been studied.  相似文献   

14.
Transition metal complexes of CoII, NiII and CuII with 4-(4-azidosulfophenylazo)-5-phenyl-3,4-dihydro-2H-pyrazol-3-oneHL1, 4-(4-azidosulfophenylazo)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrazol-3-one HL2 and 4-(3-azidosulfo-6-methoxyphenylazo)-5-methyl-2-phenyl-3,4-dihydro-2H-pyrazol-3-one HL3 were prepared and characterized by elemental analyses, molar conductances and magnetic susceptibilities and by i.r., electronic and e.s.r. spectral measurements as well as thermal (d.t.a and t.g.a.) analysis. The i.r. spectra indicate that HL acts as a bidentate ligand coordinating via the azo and enolic-oxygen linkages. The electronic spectral data and magnetic moments suggest a tetragonally distorted octahedral geometry for the complexes having the formula ML2·2H2O, (M = CoII, NiII and CuII), square pyramidal geometry for CuL 2 3 H2O and tetrahedral geometry for CoL 2 3 . The X-band e.s.r. spectra of the copper(II) complexes reveal anaxial symmetry for both CuL 2 2 2H2O and CuL 2 3 H2O while CuL 2 1 O is isotropic in the solid state at room temperature. The d.t.a. curves show two exothermic peaks for all three complexes CoL 2 3 ,NiL 2 3 2H2O and CuL 2 3 H2O and one endothermic peak for the latter two aqua complexes.  相似文献   

15.
Two new binuclear cobalt(II) complexes, [Co2 L1 (μ2‐DPP)]2+ ( 1 ) (H L1 = N, N, N′, N′‐ tetrakis (2‐benzimidazolylmethyl)‐2‐hydroxyl ‐1,3‐diaminopropane; DPP = diphenylphosphinate) and [Co2 L2 (μ2‐BNPP)2]+ ( 2 ) (H L2 = 2,6‐bis‐[N,N‐di(2‐ pyridylmethyl)aminomethyl]‐4‐methylphenol, BNPP = bis(4‐nitrophenyl)phosphate) have been synthesized and their crystal structures and magnetic properties are shown. In 1 , each CoII atom has a distorted trigonal bipyramidal coordination sphere with a N3O2 donor set and the central two CoII atoms are bridged by one alkoxo‐O atom and one μ2‐DPP ion with the Co1‐Co2 separation of 3.542Å. In 2 , each CoII atom has a pseudo octahedral environment with a N3O3 donor set and the central two CoII atoms are bridged by a phenolic oxygen atom of L2 and two μ2‐BNPP ions with the Co1‐Co2 separation of 3.667Å. Susceptibility data of 1 and 2 indicate intramolecular antiferromagnetic coupling of the high‐spin CoII atoms.  相似文献   

16.
Complexing processes between CoII and 8-mercaptoquinoline, or its various alkyl- and aryl-substituted derivatives, in contact with Co2[Fe(CN)6]-gelatin-immobilized matrix materials, with aqueous solutions of corresponding ligands, have been studied. When R2 = Me or Ph, formation of CoII chelates having a 1:2 metal ion/singly deprotonated ligand is observed, whereas when R2 = H, formation of CoIII chelates having metal ion/singly deprotonated ligand 1:3 ratios occur.  相似文献   

17.
The synthesis and the structures of (i) the ligand N,N‐Diethyl‐N′‐3,5‐di(trifluoromethyl)benzoylthiourea HEt2dtfmbtu and (ii) the NiII and PdII complexes of HEt2dtfmbtu are reported. The ligand coordinates bidendate forming bis chelates. The NiII and the PdII complexes are isostructural. The also prepared CuII complex could not be characterized by X‐ray analysis. However, the preparation of diamagnetically diluted powders Cu/Ni(Et2dtfmbtu)2 and Cu/Pd(Et2dtfmbtu)2 suitable for EPR studies was successful. The EPR spectra of the Cu/Ni and Cu/Pd systems show noticeable differences for the symmetry of the CuS2O2 unit in both complexes: the Cu/Pd system is characterized by axially‐symmetric g< and A cu tensors; for the Cu/Ni system g and A Cu have rhombic symmetry. EPR studies on frozen solutions of the CuII complex show the presence of a CuII‐CuII dimer which is the first observed for CuII acylthioureato complexes up to now. The parameters of the fine structure tensor were used for the estimation of the CuII‐CuII distance.  相似文献   

18.
Investigation of Metal Chelates with Ligands of the Cuproine and Ferroine Type. XIV. On Structure and Bonding in Carboxylatoferroinecopper(II) Chelates1) The results of ESR, VIS, and conductivity measurements on Cubipy (RCOO)2 and Cuphen(RCOO)2 type chelates are reported. The electronic and ESR spectra are discussed. A simple MO model was used to determine the bonding parameters of the chelates.  相似文献   

19.
Disulfide/thiolate interconversion supported by transition‐metal ions is proposed to be implicated in fundamental biological processes, such as the transport of metal ions or the regulation of the production of reactive oxygen species. We report herein a mononuclear dithiolate CoIII complex, [CoIIILS(Cl)] ( 1 ; LS=sulfur containing ligand), that undergoes a clean, fast, quantitative and reversible CoII disulfide/CoIII thiolate interconversion mediated by a chloride anion. The removal of Cl? from the CoIII complex leads to the formation of a bis(μ‐thiolato) μ‐disulfido dicobalt(II) complex, [Co2II,IILSSL]2+ ( 2 2+). The structures of both complexes have been resolved by single‐crystal X‐ray diffraction; their magnetic, spectroscopic, and redox properties investigated together with DFT calculations. This system is a unique example of metal‐based switchable Mn2‐RSSR/2 M(n+1)‐SR (M=metal ion, n=oxidation state) system that does not contain copper, acts under aerobic conditions, and involves systems with different nuclearities.  相似文献   

20.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号