首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A series of novel PtII-linked double helices were prepared by inter- or intrastrand ligand-exchange reactions of the complementary duplexes composed of chiral or achiral amidine dimer and achiral carboxylic acid dimer strands joined by trans-PtII–acetylide complexes with PPh3 ligands using chiral and achiral chelating diphosphines. The structure and stability of the PtII-linked double helices were highly dependent on the diphosphine structures. An interstrand ligand exchange took place with chiral and achiral 1,3-diphosphine-based ligands, resulting in trans-PtII-bridged double helices, whose helical structures were quite stable even in dimethyl sulfoxide (DMSO) due to the interstrand cross-link, whereas a 1,2-diphosphine-based ligand produced non-cross-linked cis-PtII-linked duplexes, resulting from an intrastrand ligand-exchange that readily dissociated into single strands in DMSO. When enantiopure 1,3-diphosphine-based ligands were used, the resulting trans-PtII-bridged double helices adopted a preferred-handed helical sense biased by the chirality of the bridged diphosphines. Interestingly, the interstrand ligand exchange with racemic 1,3-diphosphine toward an optically-active PtII-linked duplex, composed of chiral amidine and achiral carboxylic acid strands, was found to proceed in a diastereoselective manner, thus forming complete homochiral trans-PtII-bridged double helices via a unique chiral self-sorting.  相似文献   

2.
A series of dimer strands consisting of m-terphenyl backbones bearing complementary chiral or achiral amidines and achiral carboxylic acid residues connected by various types of linkers, such as diacetylene, Pt(II)-acetylide, and p-diethynylbenzene linkages, were synthesized by a modular strategy, and their chiroptical properties on the complementary double helix formations were investigated by absorption, circular dichroism (CD), and (1)H NMR spectroscopies. The thermodynamic and kinetic stabilities of the complementary double helices assisted by amidinium-carboxylate salt bridges are highly dependent on their linkages, and the thermodynamic analyses of the dimer duplexes revealed that the association constants increased in the order: Pt(II)-acetylide linker < p-diethynylbenzene linker < diacetylene linker, which is in agreement with the reverse order of their bulkiness. The substituents on the amidine groups were also found to affect the stabilities on the duplexes and the association constants increased in the order: isopropyl < (R)-1-phenylethyl < cyclohexyl. In addition, the introduction of electron-donating and/or electron-withdrawing substituents at the phenyl groups of the p-diethynylbenzene linkers connecting the amidine and carboxylic acid units, respectively, tends to stabilize the complementary double helices, especially in polar solvents, such as DMSO, due to the attractive charge-transfer interactions between the aromatic linkers, although the salt bridge formation is hampered in DMSO. Furthermore, the kinetic analyses of the chain exchange reactions for the duplexes bearing diacetylene and p-diethynylbenzene linkages showed that these were slow processes with negative ΔS([symbol: see text]) values, meaning that the chain exchange reactions proceed via direct exchange pathways. In contrast, those for the duplexes bearing Pt(II)-acetylide linkages were fast processes supported by positive ΔS([symbol: see text]) values, suggesting that the chain exchange reactions proceed via dissociation-exchange ones. The helix-inversion kinetics investigated for the racemic dimer duplexes composed of achiral amidines based on variable-temperature (1)H NMR measurements indicated that the barriers for the helix-inversion increased in the order: Pt(II)-acetylide linker, p-diethynylbenzene linker < diacetylene linker.  相似文献   

3.
Optically active amidine dimer strands having a variety of chiral and achiral linkers with different stereostructures are synthesized and used as templates for diastereoselective imine-bond formations between two achiral carboxylic acid monomers bearing a terminal aldehyde group and racemic 1,2-cyclohexanediamine, resulting in a preferred-handed double helix stabilized by complementary salt bridges. The diastereoselectivity of the racemic amine is significantly affected by the chirality of the amidine residues along with the rigidity and/or chirality of the linkers in the templates. NMR and kinetic studies reveal that the present imine-bond formation involves a two-step reversible reaction. The second step involves formation of a preferred-handed complementary double helix assisted by the chiral amidine templates and determines the overall reaction rate and diastereoselectivity of the amine.  相似文献   

4.
This account describes novel artificial double helices recently developed by our group. We have designed and synthesized the double helices consisting of two complementary, m-terphenyl-based strands that are intertwined through chiral amidinium-carboxylate salt bridges. Due to the chiral substituents on the amidine groups, the double helices adopted an excess one-handed helical conformation in solution as well as in the solid state. By extending the modular strategy, we have synthesized double helices bearing Pt(II) linkers, which underwent the double helix-to-double helix transformations through the chemical reactions of the Pt(II) complex moieties. In addition, artificial double-stranded metallosupramolecular helical polymers were constructed by combining the salt bridges and metal coordination. In contrast to the design-oriented double helices based on salt bridges, we have serendipitously developed a spiroborate-based double helicate bearing oligophenol strands. The optical resolution of the helicate was successfully attained by a diastereomeric salt formation. We have also unexpectedly found that oligoresorcinols consisting of a very simple repeating unit self-assemble into double helices with the aid of aromatic interactions in water. Furthermore, a bias in the twist sense of the double helices can be achieved by incorporating chiral substituents at both ends of the strands.  相似文献   

5.
Macromolecular interactions were demonstrated to yield large chiroptical effects in second harmonic generation measurements of ultrathin surface films. Second harmonic generation (SHG) has recently shown to be several orders of magnitude more sensitive to chirality in oriented systems than common linear methods, including absorbance circular dichroism (CD) and optical rotary dispersion (ORD). Numerous mechanisms have been developed to explain this anomalous sensitivity, with a general emphasis on understanding the molecular origins of the chromophore chirality. In this work, orientational effects alone are shown to be the dominant factor for generating large SHG chiral dichroic ratios in many surface systems. Three distinct uniaxial surface films of SHG-active achiral chromophores oriented at chiral templated surfaces were observed to yield chiral dichroic ratios as great as 40% in magnitude.  相似文献   

6.
A novel 2,6-anthrylene-linked bis(m-terphenylcarboxylic acid) strand ( 1 ) self-associates into a racemic double-helix. In the presence of chiral mono- and diamines, either a right- or left-handed double-helix was predominantly induced by chiral amines sandwiched between the carboxylic acid strands with accompanying stacking of the two prochiral anthracene linker units in an enantiotopic face-selective way, as revealed by circular dichroism and NMR spectral analyses. The photoirradiation of the optically active double helices complexed with chiral amines proceeded in a diastereo- (anti or syn) and enantiodifferentiating way to afford the chiral anti-photodimer with up to 98 % enantiomeric excess when (R)-phenylethylamine was used as a chiral double-helix inducer. The resulting optically active anti-photodimer can recognize the chirality of amines and diastereoselectively complex with chiral amines.  相似文献   

7.
Herein is reported a circularly polarized luminescent (CPL) probe that can respond to the chirality of nucleic acids. An achiral nanostructure was prepared by the hybridization of symmetric serinol nucleic acid (SNA) containing pyrene-modified residues. When chiral oligomers that were complementary to the SNA were added, they induced helicity into the SNA nanowire. Efficient circular dichroism (CD) signal amplification was observed when pyrene was attached to uracil bases through a rigid alkynyl linker. Both CPL and CD signals were observed; they depended on the chirality of the added acyclic threoninol nucleic acid (aTNA) oligomer. This system can be used to convert the chirality of chiral biomolecules into chiroptical signals.  相似文献   

8.
We describe novel optically active double helices consisting of complementary strands stabilized by amidinium-carboxylate salt bridges. The m-terphenyl groups of each strand are joined by trans-Pt(II) acetylide complexes with pendant PPh(3) ligands as the surrogate linker, which converts to cis counterparts by a ligand exchange reaction with cis-1,2-bis(diphenylphosphino)ethylene, resulting in the formation of double helices with different structures. Subsequent iodine-promoted reductive elimination on the Pt(II) atoms generates the fully organic, enantiomerically pure double helices. [structure: see text]  相似文献   

9.
Chirality transfer from chiral molecules to assemblies is of vital importance to the design of functional chiral materials. In this work, selective co-assembly behaviors between chiral molecules and an achiral luminophore, potentially driven by the intermolecular salt-bridge type hydrogen bonds are reported. Cyano-substituted tetrakis(arylthio)benzene carboxylic acid ( TA ) served as the luminophore and hydrogen bond donors, which underwent co-assembly with different chiral amines. It was found that structures of chiral amines affect the chirality transfer and the properties of co-assemblies due to effects on hydrogen bonds and stacking pattern. Only in specific co-assemblies, the chiroptical properties occurred at both ground state and excited states based on the emerged Cotton effects and circularly polarized luminescence (CPL) signals, revealing that the chirality was successfully transferred from molecular level to supramolecular level. In addition, accurate quantitative examination of chiral amines was realized by circular dichroism (CD) spectra. This work demonstrates the characteristic chirality response and transfer through co-assembly, providing a potential method to develop smart chiroptical materials.  相似文献   

10.
Polymeric/oligomeric and macrocyclic (salophen)Ni(II) complexes have been synthesized starting from both an achiral biphenol dialdehyde and an optically active BINOL dialdehyde. It was found that these polysalophens contain nonplanar coordination of Ni(II) units that are paramagnetic. This is different from the previously reported (salophen)Ni(II) complexes which are square planar and diamagnetic. The nonplanar (salophen)Ni(II) units make the new polymeric Ni(II) complexes different from the helical structure proposed for chiral biaryl-based polymers containing square-planar (salophen)Ni(II) units. The copolymerization of the chiral binaphthyl monomer with the achiral biphenyl monomer demonstrates that the chirality of the binaphthyl unit is not propagated along the biphenyl polymer chain.  相似文献   

11.
We describe a quantitative analysis of the complexation-induced inversion of a screw-sense preference based on a conformationally dynamic double-helix structure in a macrocycle. The macrocycle is composed of two twisting units (terephthalamide), which are spaced by two strands (1,3-bis(phenylethynyl)benzene), and is designed to generate a double-helix structure through twisting about a C2 axis in a conrotatory manner. The attachment of chiral auxiliaries to the twisting units induces a helical preference for a particular sense of (M)- or (P)-helicity through the intramolecular transmission of chirality to dynamic double helices. The twisting unit can also act as a binding site for capturing a guest molecule, and, in a complexed state, the preferred screw sense of the dynamic double-helix structure is reversed to exhibit the contrary preference. We quantitatively monitored the complexation-induced inversion of the screw-sense preference using 1H NMR spectroscopy, which enabled us to observe independently two species with (M)- or (P)-helicity in both the absence and presence of a guest molecule. Inversion of the screw-sense preference was induced upon complexation with an achiral guest as well as a chiral guest.  相似文献   

12.
Pillar[n]arenes are symmetrical macrocyclic compounds composed of benzene panels with para-methylene linkages. Each panel usually exhibits planar chirality and prefers chirality-aligned states. Because of this feature, pillar[n]arenes are attractive scaffolds for chiroptical materials that are easy to prepare and optically resolve and show intense circular dichroism (CD) signals. In addition, rotation of the panels endows the chirality of pillar[n]arenes with a dynamic nature. The chirality in tubular oligomers and supramolecular assemblies sometimes show time- and procedure-dependent alignment phenomena. Furthermore, the CD signals of some pillar[n]arenes respond to the addition of chiral guests when their dynamic chirality is coupled with host–guest properties. By using diastereomeric pillar[n]arenes with additional chiral structures, the response can also be caused by achiral guests and changes of the environment, providing molecular sensors.  相似文献   

13.
The artificial sequential strands consisting of two, three, or four m-terphenyl groups joined by diacetylene linkers with complementary binding sites, either the chiral amidine (A) or achiral carboxyl (C) group, were synthesized in a stepwise manner. Using circular dichroism and (1)H NMR spectroscopies along with liquid chromatography, we showed that, when three dimeric molecular strands (AA, CC, and AC) or six trimeric molecular strands (AAA, CCC, AAC, CCA, ACA, and CAC) were mixed in solution, the complementary strands were sequence-specifically hybridized to form one-handed double-helical dimers AA.CC and (AC) 2 or trimers AAA.CCC, AAC.CCA, and ACA.CAC, respectively, through complementary amidinium-carboxylate salt bridges. Upon the addition of CCA to a mixture of AAA, AAC, and ACA, the AAC.CCA double helix was selectively formed and then isolated from the mixture by chromatography. Moreover, the homo-oligomer mixtures of amidine or carboxylic acid from the monomers to tetramers (A, AA, AAAA, C, CC, and CCCC) assembled with a precise chain length specificity to form A.C, AA.CC, and AAAA.CCCC, which were separated by chromatography.  相似文献   

14.
In the presence of tryptophan (Trp), complex micelles were prepared by 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (TPPS) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methylacrylate) (PEG-b-PDMAEMA) in aqueous solutions at pH 1.8. Different mixing sequences led to different morphologies. Spheres and nanorods of small size were obtained in sequence I (P/Trp+TPPS) where TPPS was added into the mixed solution of PEG-b-PDMAEMA and Trp. More nanorods of larger length were achieved in sequence II (TPPS/Trp+P) where the copolymer was added as the last component. Two types of supramolecular chirality of TPPS aggregates caused by mixing sequences were investigated. In (P/Trp+TPPS), the circular dichroism (CD) signal of H-band was in line with the chirality of Trp while that of J-band exhibited an opposite signal (Chirality I). In (TPPS/Trp+P), chiral signals at both H- and J-bands followed that of Trp (Chirality II). The conversion between the two types of chirality can be accomplished by modulating the molar ratio of the repeating units on block PDMAEMA to TPPS, or a cycle of pH 1.8-5.5-1.8 processing on the micelle solution. In addition, the supramolecular chirality can be memorized via strong electrostatic interaction with achiral copolymer even after removal of the chiral template, but only Chirality II can be cyclically "switched-off-on".  相似文献   

15.
Diacetylene monomers with respective lengths of the oxyethylene chains were cyclopolymerized with a rhodium catalyst to produce novel poly(phenylacetylene)s bearing a different cavity size of the chiral crown ether in the repeating units ( 2a – c ). In the circular dichroism spectra of the resulting polymers, characteristic Cotton effects were observed in the range from 350 to 500 nm corresponding to the absorption of the conjugated polymer backbone, indicating that the polymers possessed a helical structure with an excess single screw sense induced by the covalently bonded binaphthyl units. The host–guest complexation of 2a – c with achiral guests produced a chiroptical change based on the fluctuation in the main chain conformation. The behavior of the complexation‐induced chiroptical change was essentially dictated by the cavity size of the binaphthocrown ether units. Additionally, a chirality‐responsive helicity change was observed in the case of the complexation of 2a – c with chiral guests, which also depended on the crown ether size. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1197–1206, 2010  相似文献   

16.
We report unique phenomena where the transition from a homochiral helix to a heterochiral helix occurs by increasing the chain length of the l-sequence. Peptides composed of the l-Leu sequences with different lengths and the achiral nona-sequence at the C-terminal side were used here. Conformation of their peptides in solution was investigated mainly by using CD analysis in various solvents, or additionally by IR and NMR. When the l-sequence has a sufficient length, a left-handed helicity was induced in the achiral sequence. Notably, the polymeric l-sequence produced a heterochiral helix that switches the helix sense around the boundary of the chiral/achiral sequence. Energy calculation demonstrated that a stable heterochiral helix favors a bending form, while a homochiral helix takes a relatively straight form. Such a bending form was suggested to be advantageous to solvent effects. The "Schellman motif" has been recognized as a local heterochiral structure in protein helices. We propose a nucleation model of a heterochiral helix through the covalent chiral domino effect derived from the Schellman motif. The present findings not only offer us novel design of a heterochiral helix but also support an elementary model for the origins of homochiral-heterochiral structures from primitive chiral/achiral sequences.  相似文献   

17.
The control of the chiroptical properties of two azopolymers, which contain chiral terminal alkyl chains, by means of thermal and light irradiation processes has been studied. Both UV–vis and CD spectra of films and dichloromethane (DCM)/hexane solutions of the polymers have been registered and analyzed before and after different irradiation conditions: 488 nm circularly polarized light (CPL) and 365 nm unpolarized light. The chiroptical properties of the polymer containing chiral 1-methylheptyloxy terminal chains depended on the thermal history of the sample. As a result, the photocontrol of the chiral response in the bulk material by CPL irradiation has been evaluated on samples cooled from the isotropic state to room temperature at different rates. The chiroptical properties of these azopolymers show an intriguing combination of control from both the supramolecular and molecular chirality level as well as the thermal history of the sample and CPL irradiation.  相似文献   

18.
为了深入理解乙烯基二联苯单体自由基聚合过程中的手性传递,进行了手性单体(+)-2-[(S)-异丁氧羰基-5-(4′-己氧基苯基)苯乙烯、非手性单体2-丁氧羰基-5-(4′-己氧基苯基)苯乙烯的均聚反应及它们二者的共聚反应,探讨了聚合温度和溶剂性质对手性单体均聚物旋光活性、手性单体含量对共聚物旋光活性以及聚合反应溶剂的超分子手性对共聚物旋光活性的影响.研究发现,降低聚合温度、采用液晶性反应介质有利于得到旋光度大的聚合物;少量手性单体的引入即可诱导共聚物形成某一方向占优的螺旋构象,比旋光度随手性单体的含量增加呈线性增长;在胆甾相液晶中制备的非手性单体聚合物不具有光学活性.这些结果表明,该类乙烯基二联苯聚合物具有动态螺旋构象,其光学活性主要依赖于主链的立构规整度和侧基不对称原子的手性.  相似文献   

19.
The synthesis of chiral liquid-crystalline polymers of well-controlled structure (linear and three-armed star-shaped) with distinct average chain lengths and low polydispersity was achieved by atom transfer radical polymerisation (ATRP) of a new optically active monomer (S)-4-[6-(2-methacryloyloxypropanoyloxy)hexyloxy)]-4'-ethoxyazobenzene [(S)-ML6A], containing the L-lactic residue of one absolute configuration in the side-chain. All the obtained polymeric samples, characterised by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and polarised optical microscopy (POM), exhibit a smectic A(1/2) (fully interdigitated) liquid-crystalline phase and high cleaning points, with transition temperatures dependent on the average polymerisation degree and the macromolecular structure. The chirality originated at the molecular level by the asymmetric functionality of the L-lactic acid residue provides the polymers, in the smectic phase, of highly homogeneous conformations with a prevailing chirality related to the presence of H-aggregates having conformational dissymmetry of one prevailing screw-sense. By irradiating with circularly polarised light (CPL), it is possible to photomodulate the chiroptical properties of these intrinsically chiral polymeric thin films. Upon irradiation with left-handed CPL (l-CPL), the circular dichroism (CD) spectra of the films show enhancement of ellipticity and a net inversion of sign. The effect is reversible and the mirror image of the CD spectrum can be restored by pumping with right-handed CPL radiation (r-CPL). The results show the ability of l-CPL to invert the supramolecular chirality of the materials and demonstrate the essential role of azoaromatic aggregates.  相似文献   

20.
We describe the construction of the first double-stranded metallosupramolecular helical polymers. We designed and synthesized a supramolecular duplex comprised of complementary m-terphenyl-based strands bearing a chiral amidine or achiral carboxylic acid together with two pyridine groups at the four ends. Supramolecular polymerization of the duplex with cis-PtPh2(DMSO)2 in 1,1,2,2-tetrachloroethane produced the double-stranded metallosupramolecular polymer with a controlled helicity of which the two complementary metallostrands are intertwined through the amidinium-carboxylate salt bridges. The structures and hydrodynamic dimensions of the metallosupramolecular polymers were characterized by 1H NMR, diffusion-ordered NMR, dynamic light scattering, absorption, and CD measurements. The polymeric structure was also visualized by atomic force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号