首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The radiationless decay mechanisms of the S1 excited states of the 7H-keto-amino, 7H-enol-amino, and 7H-keto-imino tautomers of guanine have been investigated with the CASPT2//CASSCF method. Out-of-plane deformation of the six-membered ring or the imino group as well as dissociation of NH bonds have been considered as photochemical pathways leading to conical intersections with the electronic ground state. It has been found that all three tautomers can reach S0-S1 conical intersections by out-of-plane deformation. However, only in the 7H-keto-amino tautomer the reaction path leading to the conical intersection is barrierless. This tautomer also has the lowest energy barrier for hydrogen detachment via the (1)pi sigma* state, whose potential energy surface intersects that of the (1)pi pi* state as well as that of the ground state. The other tautomers of guanine exhibit substantial energy barriers on their S1 potential energy surfaces with respect to both reaction mechanisms. These findings suggest that the 7H-keto-amino tautomer exhibits the shortest excited-state lifetime of the three tautomers due to particularly fast nonradiative deactivation processes through S0-S1 conical intersections. The computational results explain the remarkable observation that the energetically most stable 7H-keto-amino tautomer is missing in the resonant two-photon ionization spectrum of guanine in a supersonic jet. The results also explain that the energetically less stable 7H-enol-amino and 7H-keto-imino tautomers have longer excited-state lifetimes and are thus detectable by resonant two-photon ionization.  相似文献   

2.
An ab initio theoretical study at the CASPT2 level is reported on minimum energy reaction paths, state minima, transition states, reaction barriers, and conical intersections on the potential energy hypersurfaces of two tautomers of adenine: 9H- and 7H-adenine. The obtained results led to a complete interpretation of the photophysics of adenine and derivatives, both under jet-cooled conditions and in solution, within a three-state model. The ultrafast subpicosecond fluorescence decay measured in adenine is attributed to the low-lying conical intersection (gs/pipi* La)(CI), reached from the initially populated 1(pipi* La) state along a path which is found to be barrierless only in 9H-adenine, while for the 7H tautomer the presence of an intermediate plateau corresponding to an NH2-twisted conformation may explain the absence of ultrafast decay in 7-substituted compounds. A secondary picosecond decay is assigned to a path involving switches towards two other states, 1(pipi* Lb) and 1(npi*), ultimately leading to another conical intersection with the ground state, (gs/npi*), with a perpendicular disposition of the amino group. The topology of the hypersurfaces and the state properties explain the absence of secondary decay in 9-substituted adenines in water in terms of the higher position of the 1(npi*) state and also that the 1(pipi* Lb) state of 7H-adenine is responsible for the observed fluorescence in water. A detailed discussion comparing recent experimental and theoretical findings is given. As for other nucleobases, the predominant role of a pipi*-type state in the ultrafast deactivation of adenine is confirmed.  相似文献   

3.
We present the excited-state potential energy profiles of the biologically relevant 9H-keto-amino tautomer of guanine with respect to the radiationless decay via the out-of-plane deformation of the six-membered ring as well as the dissociation of NH bonds. The CASPT2//CASSCF method is employed for the reaction-path calculations. The reaction path for the out-of-plane deformation in the (1)pi pi* state leads in a barrierless way to a conical intersection with the electronic ground state. For the NH dissociation via the (1)pi sigma* state, the 9H-keto-amino tautomer is shown to have lower energy barriers than the 7H tautomers which we have studied recently. These two radiationless decay mechanisms explain the unexpected missing of the biologically relevant form in the resonant two-photon ionization spectrum of guanine in a supersonic jet. It is suggested that these ultrafast deactivation processes provide the biologically relevant tautomer of guanine with a high degree of photostability.  相似文献   

4.
The complete active space with second-order perturbation theory/complete active space self-consistent-field method was used to explore the nonradiative decay mechanism for excited 9H-guanine. On the 1pipi* (1L(a)) surface we determined a conical intersection (CI), labeled (S0pipi*)(CI), between the 1pipi* (1L(a)) excited state and the ground state, and a minimum, labeled (pipi*)min. For the 1pipi* (1L(a)) state, its probable deactivation path is to undergo a spontaneous relaxation to (pipi*)min first and then decay to the ground state through (S0pipi*)(CI), during which a small activation energy is required. On the 1n(N)pi* surface a CI between the 1n(N)pi* and 1pipi* (1L(a)) states was located, which suggests that the 1n(N)pi* excited state could transform to the 1pipi* (1L(a)) excited state first and then follow the deactivation path of the 1pipi* (1L(a)) state. This CI was also possibly involved in the nonradiative decay path of the second lowest 1pipi* (1L(b)) state. On the 1n(O)pi* surface a minimum was determined. The deactivation of the 1n(O)pi* state to the ground state was estimated to be energetically unfavorable. On the 1pisigma* surface, the dissociation of the N-H bond of the six-membered ring is difficult to occur due to a significant barrier.  相似文献   

5.
The low-lying excited singlet states of the keto, enol, and keto-imine tautomers of cytosine have been investigated employing a combined density functional/multireference configuration interaction (DFT/MRCI) method. Unconstrained geometry optimizations have yielded out-of-plain distorted structures of the pi --> pi and n --> pi excited states of all cytosine forms. For the keto tautomer, the DFT/MRCI adiabatic excitation energy of the pi --> pi state (4.06 eV including zero-point vibrational energy corrections) supports the resonant two-photon ionization (R2PI) spectrum (Nir et al. Phys. Chem. Chem. Phys. 2002, 5, 4780). On its S1 potential energy surface, a conical intersection between the 1pipi state and the electronic ground state has been identified. The barrier height of the reaction along a constrained minimum energy path amounts to merely 0.2 eV above the origin and explains the break-off of the R2PI spectrum. The 1pipi minimum of the enol tautomer is found at considerably higher excitation energies (4.50 eV). Because of significant geometry shifts with respect to the ground state, long vibrational progressions are expected, in accord with experimental observations. For the keto-imine tautomer, a crossing of the 1pipi potential energy surface with the ground-state surface has been found, too. Its n --> pi minimum (3.27 eV) is located well below the conical intersection between the pi --> pi and S0 states, but it will be difficult to observe because of its small transition moment. The identified conical intersections of the pi --> pi excited states of the keto cytosine tautomers are made responsible for the ultrafast decay to the electronic ground states and thus may explain their subpicoseconds lifetimes.  相似文献   

6.
We use ab initio CASSCF and CASPT2 computations to construct the composite multistate relaxation path relevant to cycloocta-1,3,5,7-tetraene singlet photochemistry. The results show that an efficient population of the dark excited state (S(1)) takes place after ultrafast decay from the spectroscopic excited state (S(2)). A planar D(8)(h)-symmetric minimum represents the collecting point on S(1). Nonadiabatic transitions to S(0) appear to be controlled by two different tetraradical-type conical intersections, which are directly accessible from the S(1) minimum following specific excited-state reaction paths. The higher-energy conical intersection belongs to the same type of intersections previously documented in linear and cyclic conjugated hydrocarbons and features a triangular -(CH)(3)- kink. This point mediates both cis --> trans photoisomerization and cyclopropanation reactions. The lowest energy conical intersection has a boat-shaped structure. This intersection accounts for production of semibullvalene or for double-bond shifting. The mapping of both photochemical and thermal reaction paths (including also Cope rearrangements, valence isomerizations, ring inversions, and double-bond shifting) has allowed us to draw a comprehensive reactivity scheme for cyclooctatetraene, which rationalizes the experimental observations and documents the complex network of photochemical and thermal reaction path interconnections. The factors controlling the selection and accessibility of a number of conjugated hydrocarbon prototype conical intersections and ground-state relaxation channels are discussed.  相似文献   

7.
Combined density functional and multireference configuration interaction methods have been used to calculate the electronic spectrum of 9H-adenine, the most stable tautomer of 6-aminopurine. In addition, constrained minimum energy paths on excited potential energy hypersurfaces have been determined along several relaxation coordinates. The minimum of the first (1)[n-->pi*] state has been located at an energy of 4.54 eV for a nuclear arrangement in which the amino group is pyramidal whereas the ring system remains planar. Close by, another minimum on the S(1) potential energy hypersurface has been detected in which the C(2) center is deflected out of the molecular plane and the electronic character of S(1) corresponds to a nearly equal mixture of (1)[pi-->pi*] and (1)[n-->pi*] configurations. The adiabatic excitation energy of this minimum amounts to 4.47 eV. Vertical and adiabatic excitation energies of the lowest n-->pi* and pi-->pi* transitions as well as transition moments and their directions are in very good agreement with experimental data and lend confidence to the present quantum chemical treatment. On the S(1) potential energy hypersurface, an energetically favorable path from the singlet n-->pi* minimum toward a conical intersection with the electronic ground state has been identified. Close to the conical intersection, the six-membered ring of adenine is strongly puckered and the electronic structure of the S(1) state corresponds to a pi-->pi* excitation. The energetic accessibility of this relaxation path at about 0.1 eV above the singlet n-->pi* minimum is presumably responsible for the ultrafast decay of 9H-adenine after photoexcitation and explains why sharp vibronic peaks can only be observed in a rather narrow wavelength range above the origin. The detected mechanism should be equally applicable to adenosine and 9-methyladenine because it involves primarily geometry changes in the six-membered ring whereas the nuclear arrangement of the five-membered ring (including the N(9) center) is largely preserved.  相似文献   

8.
Several reaction pathways for the photochemical transformations of methyl-substituted pyrazine in its first excited state 1(pi --> pi*) have been determined using the CASSCF (six-orbital/six-electron active space) and MP2-CAS methods with the 6-311G(d) basis set. Our model investigations suggest that conical intersections play a crucial role in the photoisomerization of pyrazines. Moreover, the present theoretical findings indicate that all of the photoisomerizations of pyrazines adopt the same reaction path as follows: pyrazine --> Franck-Condon region --> conical intersection --> pyrimidine. That is, although an excited-state pyrazine molecule can initiate a phototransposition process easily, this process can be completed on the ground-state potential energy surface after passage through a conical intersection where a fast, radiationless decay is possible. The existence of these nonadiabatic reaction pathways is consistent with the available experimental observations of the photochemistry and photophysics of pyrazine and its methyl derivatives. In the present work, we propose a simple p-pi orbital topology model, which can be used as a diagnostic tool to predict the location of the conical intersections, as well as the geometries of the phototransposition products of various heterocycles.  相似文献   

9.
The excited-state properties and related photophysical processes of the acidic and basic forms of pterin have been investigated by the density functional theory and ab initio methodologies. The solvent effects on the low-lying states have been estimated by the polarized continuum model and combined QM/MM calculations. Calculations reveal that the observed two strong absorptions arise from the strong pi --> pi* transitions to 1(pipi*L(a)) and 1(pipi*L(b)) in the acidic and basic forms of pterin. The first 1(pipi*L(a)) excited state is exclusively responsible for the experimental emission band. The vertical 1(n(N)pi*) state with a small oscillator strength, slightly higher in energy than the 1(pipi*L(a)) state, is less accessible by the direct electronic transition. The 1(n(N)pi*) state may be involved in the photophysical process of the excited pterin via the 1(pipi*L(a)/n(N)pi*) conical intersection. The radiationless decay of the excited PT to the ground state experiences a barrier of 13.8 kcal/mol for the acidic form to reach the (S(1)/S(0)) conical intersection. Such internal conversion can be enhanced with the increase in excitation energy, which will reduce the fluorescence intensity as observed experimentally.  相似文献   

10.
Singlet fluorescence lifetimes of adenosine, cytidine, guanosine, and thymidine, determined by femtosecond pump-probe spectroscopy (Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348. Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 123, 10370), show that the excited states produced by 263 nm light in these nucleosides decay in the subpicosecond range (290-720 fs). Ultrafast radiationless decay to the ground state greatly reduces the probability of photochemical damage. In this work we present a theoretical study of isolated cytosine, the chromophore of cytidine. The experimental lifetime of 720 fs indicates that there must be an ultrafast decay channel for this species. We have documented the possible decay channels and approximate energetics, using a valence-bond derived analysis to rationalize the structural details of the paths. The mechanism favored by our calculations and the experimental data involves (1) a two-mode decay coordinate composed of initial bond length inversion followed by internal vibrational energy redistribution (IVR) to populate a carbon pyramidalization mode, (2) a state switch between the pi,pi* and nO,pi* (excitation from oxygen lone pair) excited states, and (3) decay to the ground state through a conical intersention. A second decay path through the nN,pi* state (excitation from the nitrogen lone pair), with a higher barrier, involves out-of-plane bending of the amino substituent.  相似文献   

11.
The role of ultraviolet photoresistance in many biomolecules (e.g., DNA bases and amino acids) has been extensively researched in recent years. This behavior has largely been attributed to the participation of dissociative (1)πσ* states localized along X-H (X ═ N, O) bonds, which facilitate an efficient means for rapid nonradiative relaxation back to the electronic ground state via conical intersections or ultrafast H-atom elimination. One such species known to exhibit this characteristic photochemistry is the UV chromophore imidazole, a subunit in the biomolecules adenine and histidine. However, the (1)πσ* driven photochemistry of its structural isomer pyrazole has received much less attention, both experimentally and theoretically. Here, we probe the ultrafast excited state dynamics occurring in pyrazole following photoexcitation at 200 nm (6.2 eV) using two experimental methodologies. The first uses time-resolved velocity map ion imaging to investigate the ultrafast H-atom elimination dynamics following direct excitation to the lowest energy (1)πσ* state (1(1)A" ← X(1)A'). These results yield a bimodal distribution of eliminated H-atoms, situated at low and high kinetic energies, the latter of which we attribute to (1)πσ* mediated N-H fission. The time constants extracted for the low and high energy features are ~120 and <50 fs, respectively. We also investigate the role of ring deformation relaxation pathways from the first optically bright (1)ππ* state (2(1)A' ← X(1)A'), by performing time-resolved ion yield measurements. These results are modeled using a (1)ππ* → ring deformation → photofragmentation mechanism (a model based on comparison with theoretical calculations on the structural isomer imidazole) and all photofragments possess appearance time constants of <160 fs. A comparison between time-resolved velocity map ion imaging and time-resolved ion yield measurements suggest that (1)πσ* driven N-H fission gives rise to the dominant kinetic photoproducts, re-enforcing the important role (1)πσ* states have in the excited state dynamics of biological chromophores and related aromatic heterocycles.  相似文献   

12.
By integrating the results of MS-CASPT2/CASSCF and TD-PBE0 calculations, we propose a mechanism for the decay of the excited dark state in pyrimidine, fully consistent with all the available experimental results. An effective conical intersection (CI-npi) exists between the spectroscopic pi/pi* excited state (Spi) and a dark n/pi* state (Sn), and a fraction of the population decays to the minimum of Sn (Sn-min). The conical intersection between Sn and the ground-state is not involved in the decay mechanism, because of its high energy gap with respect to Sn-min. On the other hand, especially in hydrogen bonding solvents, the energy gap between Sn-min and CI-npi is rather small. After thermalization in Sn-min, the system can thus recross CI-npi and then quickly proceed on the Spi barrierless path toward the conical intersection with the ground state.  相似文献   

13.
Combined density functional and multireference configuration interaction methods have been employed to explore the ground and low-lying electronically excited states of the most important tautomeric and rotameric forms of guanine with the purpose of resolving the conflicting assignments of IR-UV bands found in the literature. The calculations predict sharp 1(pi-->pi*) origin transitions for the RN1 rotamer of the 7H-amino-hydroxy species and the RN7 rotamer of the 9H-amino-hydroxy species. The other 9H-amino-hydroxy rotamer, RN1, undergoes ultrafast nonradiative decay and is thus missing in the UV spectra. Because of its very small Franck-Condon factor and the presence of a conical intersection close by, it appears questionable, whether the 1(pi-->pi*) origin transition of 9H-amino-oxo-guanine can be observed experimentally. Vibrational overlap is more favorable for the 1(pi-->pi*) origin transition of the 7H- amino-oxo form, but also this tautomer is predicted to undergo ultrafast nonradiative decay of the 1(pi-->pi*) population. The good agreement of calculated IR frequencies of the amino-oxo species with recent IR spectra in He droplets and their mismatch with peaks observed in IR-UV spectra indicate that none of the bands stem from 7H- or 9H-amino-oxo guanine. Instead, our results suggest that these bands originate from 7H-imino-oxo guanine tautomers. In the excited-state dynamics of the biologically relevant 9H-amino-oxo tautomer, a diffuse charge transfer state is predicted to play a significant role.  相似文献   

14.
Exploratory electronic structure calculations have been performed with the CC2 (simplified singles and doubles coupled-cluster) method for two conformers of the adenine (A)-thymine (T) base pair, with emphasis on excited-state proton-transfer reactions. The Watson-Crick conformer and the most stable (in the gas-phase) conformer of the A-T base pair have been considered. The equilibrium geometries of the ground state and of the lowest excited electronic states have been determined with the MP2 (second-order M?ller-Plesset) and CC2 methods, respectively. Vertical and adiabatic excitation energies, oscillator strengths, and dipole moments of the excited states are reported. Of particular relevance for the photochemistry of the A-T base pair are optically dark (1)pipi* states of charge-transfer character. Although rather high in energy at the ground-state equilibrium geometry, these states are substantially lowered in energy by the transfer of a proton, which thus neutralizes the charge separation. A remarkable difference of the energetics of the proton-transfer reaction is predicted for the two tautomers of A-T: in the Watson-Crick conformer, but not in the most stable conformer, a sequence of conical intersections connects the UV-absorbing (1)pipi* state in a barrierless manner with the electronic ground state. These conical intersections allow a very fast deactivation of the potentially reactive excited states in the Watson-Crick conformer. The results provide evidence that the specific hydrogen-bonding pattern of the Watson-Crick conformer endows this structure with a greatly enhanced photostability. This property of the Watson-Crick conformer of A-T may have been essential for the selection of this species as carrier of genetic information in early stages of the biological evolution.  相似文献   

15.
The active role of the optically dark pi sigma* state, following UV absorption, has been implicated in the photochemistry of a number of biomolecules. This work focuses on the role of the pi sigma* state in the photochemistry of phenol upon excitation at 200 nm. By probing the neutral hydrogen following UV excitation, we show that hydrogen elimination along the dissociative pi sigma* potential energy surface occurs within 103 +/- 30 fs, indicating efficient coupling at the S1/S2 and S0/S2 conical intersections, with no identifiable role of statistical unimolecular decay of vibronically excited (S0) phenol in the timeframe of our measurements.  相似文献   

16.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

17.
The dynamics following electronic excitation of hypoxanthine and its nucleoside inosine were studied by femtosecond fluorescence up-conversion. Our objective was to explore variants of the purinic DNA bases in order to determine the molecular parameters that increase or reduce the accessibility to ground state conical intersections. From experiments in water and methanol solution we conclude that both dominant neutral tautomers of hypoxanthine exhibit ultrashort excited state lifetimes (τ < 0.2 ps), which are significantly shorter than in the related nucleobase guanine. This points to a more accessible conical intersection for the fluorescent state upon removal of the amino group, present in guanine but absent in hypoxanthine. The excited state dynamics of singly protonated hypoxanthine were also studied, showing biexponential decays with a 1.1 ps component (5%) besides a sub-0.2 ps ultrafast component. On the other hand, the S(1) lifetimes of the singly deprotonated forms of hypoxanthine and inosine show drastic differences, where the latter remains ultrafast but the singly deprotonated hypoxanthine shows a much longer lifetime of 19 ps. This significant variation is related to the different deprotonation sites in hypoxanthine versus inosine, which gives rise to significantly different resonance structures. In our study we also include multireference perturbation theory (MRMP2) excited state calculations in order to determine the nature of the initial electronic excitation in our experiments and clarify the ordering of the states in the singlet manifold at the ground state geometry. In addition, we performed multireference configuration interaction calculations (MR-CIS) that identify the presence of low-lying conical intersections for both prominent neutral tautomers of hypoxanthine. In both cases, the surface crossings occur at geometries reached by out of plane opposite motions of C2 and N3. The study of this simpler purine gives several insights into how small structural modifications, including amino substitution and protonation site and state, determine the accessibility to conical intersections in this kind of heterocycles.  相似文献   

18.
Femtosecond dynamics of riboflavin, the parent chromophore of biological blue-light receptors, was measured by broadband transient absorption and stationary optical spectroscopy in polar solution. Rich photochemistry is behind the small spectral changes observed: (i) loss of oscillator strength around time zero, (ii) sub-picosecond (ps) spectral relaxation of stimulated emission (SE), and (iii) coherent vibrational motion along a' (in-) and a' (out-of-plane) modes. Loss of oscillator strength is deduced from the differences in the time-zero spectra obtained in water and DMSO, with stationary spectroscopy and fluorescence decay measurements providing additional support. The spectral difference develops faster than the time resolution (20 fs) and is explained by formation of a superposition state between the optically active (1pi pi*) S1 and closely lying dark (1n pi*) states via vibronic coupling. Subsequent spectral relaxation involves decay of weak SE in the blue, 490 nm, together with rise and red shift of SE at 550 nm. The process is controlled by solvation (characteristic times 0.6 and 0.8 ps in water and DMSO, respectively). Coherent oscillations for a' and a' modes show up in different regions of the SE band. a' modes emerge in the blue edge of the SE and dephase faster than solvation. In turn, a' oscillations are found in the SE maximum and dephase on the solvation timescale. The spectral distribution of coherent oscillations according to mode symmetry is used to assign the blue edge of the SE band to a 1n pi*-like state (A'), whereas the optically active 1pi pi* (A') state emits around the SE maximum. The following model comes out: optical excitation occurs to the Franck-Condon pi pi* state, a pi pi*-n pi* superposition state is formed on an ultrafast timescale, vibrational coherence is transferred from a' to a' modes by pi pi*-n pi* vibronic coupling, and subsequent solvation dynamics alters the pi pi*/n pi* population ratio.  相似文献   

19.
The ultrafast relaxation dynamics of two rotation-restricted (azobenzeno-2S-phane and azobenzeno-4S-phane) and one rotation-free (4,4'-dimethylazobenzene) azobenzene derivatives were investigated using femtosecond fluorescence up-conversion on both S(1)(n,pi) and S(2)(pi,pi) excitations. On S(2) excitation, pulse-limited kinetics with a decay coefficient of approximately 100 fs corresponding to ultrafast S(2) --> S(1) relaxation is found to be common for all molecules under investigation regardless of the molecular structure. This indicates that a direct rotational relaxation on the S(2) surface is unfavorable. On S(1) excitation, we observed biphasic fluorescence decay with a femtosecond component attributed to the decay of the Franck-Condon state prepared by excitation and a picosecond component attributed to the deactivation of the relaxed molecule on the S(1) surface. This picosecond component is slowed by at least a factor of 2 for the rotation-restricted 2S-bridged molecule compared to that of the rotation-free molecule; for the even stronger rotation-restricted azobenzeno-4S-phane, the decrease is by a factor of 10. These differences in deactivation suggest that the relaxed states and probably the trajectories for rotation-free and rotation-restricted molecules are different on the S(1) surface, which should be important for the quantum yield of photoisomerization.  相似文献   

20.
Ultrafast time-resolved mass spectrometry and structural dynamics experiments on trans-stilbene, cis-stilbene, and azobenzene, with excitation to high-lying electronic states, reveal a rich diversity of photochemical reaction dynamics. All processes are found to be quite unlike the well-known photochemistry on lower electronic surfaces. While in trans-stilbene, excitation at 6 eV induces a phenyl twisting motion, in cis-stilbene it leads to an ultrafast ring-closing to form 4a,4b-dihydrophenanthrene. Azobenzene dissociates on an ultrafast time scale, rather than isomerizing as it does on a lower surface. The photochemical dynamics of the sample molecules proceed along steep potential energy surfaces and conical intersections. Because of that, the dynamics are much faster than vibrational relaxation, the randomizing effects from vibrational energy scrambling are avoided, and excitation-energy specific reaction dynamics results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号