首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high‐spin cobalt(II) complexes, namely [CoII(dmf)6](BPh4)2 ( 1 ) and [CoII2(sym‐hmp)2](BPh4)2 ( 2 ), in which dmf=N,N‐dimethylformamide; sym‐hmp=2,6‐bis[(2‐hydroxyethyl)methylaminomethyl]‐4‐methylphenolate, and BPh4?=tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual CoII site. In compound 1 , this approach reveals the correlation between the single‐ion easy magnetization direction and a trigonal elongation axis of the CoII coordination octahedron. In exchange‐coupled dimer 2 , the determination of the individual CoII magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both CoII sites deviate from the single‐ion behavior because of antiferromagnetic exchange coupling.  相似文献   

2.
Studies on the magnetic properties of the molecular antiferromagnetic material {N(n-C5H11)4[MnIIFeIII(ox)3]}, carried out by various physical techniques (AC/DC magnetic susceptibility, magnetization, heat capacity measurements and Mössbauer spectroscopy) at low temperatures, have been presented. Different experimental observations complement each other and provide a clue for the observation of an uncompensated magnetization below the Néel temperature and short-range correlations persisting high above TN. It is understood that the honeycomb layered structure of the compound contains non-equivalent magnetic sub-lattices, (MnII–ox–FeIIIA–...) and (MnII–ox–FeIIIB–...), where different responses of the FeIIIA and FeIIIB spin sites towards an external magnetic field might be responsible for the observation of the uncompensated magnetization in this compound at T < TN. The present magnetic system is an S = 5/2 2-D Heisenberg antiferromagnet system with the intralayer exchange parameter J/kB = −3.29 K. A very weak interlayer exchange interaction was anticipated from the spin wave modeling of the magnetic heat capacity for T < 0.5TN. The positive sign of the coupling between the layers has been concluded from the Mössbauer spectrum in the applied magnetic field. Frustration in the magnetic interactions gives rise to the uncompensated magnetic moment in this compound at low temperatures.  相似文献   

3.
Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII(CN)3]? (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin‐crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII(CN)3]? units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.  相似文献   

4.
Polycrystalline Co0.75Ni0.75[Fe(CN)6]?·?XH2O was prepared by coprecipitation. The coprecipitated powder was annealed in vacuum at 80°C, 100°C, and 130°C. Variation of microstructural and magnetic properties with different annealed temperatures was studied by Fourier-transform infrared, X-ray diffraction, and magnetization measurements. The differences in magnetic phase transition temperature, coercivity, remanence, and effective magnetization were studied in detail. The magnetic contribution mainly results from FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII because FeII–CN–CoIII/NiII carries no net spin. After annealing at 130°C, the microstructures FeIII–CN–CoII/NiII and FeIII–NC–CoII/NiII convert to FeII–CN–CoIII/NiII. Differences in magnetic properties may be attributed to heat-induced microstructural changes.  相似文献   

5.
The nature and magnitude of the magnetic anisotropy of heptacoordinate mononuclear NiII and CoII complexes were investigated by a combination of experiment and ab initio calculations. The zero‐field splitting (ZFS) parameters D of [Ni(H2DAPBH)(H2O)2](NO3)2 ? 2 H2O ( 1 ) and [Co(H2DAPBH)(H2O)(NO3)](NO3) [ 2 ; H2DAPBH=2,6‐diacetylpyridine bis‐ (benzoyl hydrazone)] were determined by means of magnetization measurements and high‐field high‐frequency EPR spectroscopy. The negative D value, and hence an easy axis of magnetization, found for the NiII complex indicates stabilization of the highest MS value of the S=1 ground spin state, while a large and positive D value, and hence an easy plane of magnetization, found for CoII indicates stabilization of the MS=±1/2 sublevels of the S=3/2 spin state. Ab initio calculations were performed to rationalize the magnitude and the sign of D, by elucidating the chemical parameters that govern the magnitude of the anisotropy in these complexes. The negative D value for the NiII complex is due largely to a first excited triplet state that is close in energy to the ground state. This relatively small energy gap between the ground and the first excited state is the result of a small energy difference between the dxy and ${{\rm{d}}_{x^2 - y^2 } }$ orbitals owing to the pseudo‐pentagonal‐bipyramidal symmetry of the complex. For CoII, all of the excited states contribute to a positive D value, which accounts for the large magnitude of the anisotropy for this complex.  相似文献   

6.
The reaction of MnII and [NEt4]CN leads to the isolation of solvated [NEt4]Mn3(CN)7 ( 1 ) and [NEt4]2Mn3(CN)8 ( 2 ), which have hexagonal unit cells [ 1 : R$\bar 3$ m, a=8.0738(1), c=29.086(1) Å; 2 : P$\bar 3$ m1, a=7.9992(3), c=14.014(1) Å] rather than the face centered cubic lattice that is typical of Prussian blue structured materials. The formula units of both 1 and 2 are composed of one low‐ and two high‐spin MnII ions. Each low‐spin, octahedral [MnII(CN)6]4? bonds to six high‐spin tetrahedral MnII ions through the N atoms, and each of the tetrahedral MnII ions are bound to three low‐spin octahedral [MnII(CN)6]4? moieties. For 2 , the fourth cyanide on the tetrahedral MnII site is C bound and is terminal. In contrast, it is orientationally disordered and bridges two tetrahedral MnII centers for 1 forming an extended 3D network structure. The layers of octahedra are separated by 14.01 Å (c axis) for 2 , and 9.70 Å (c/3) for 1 . The [NEt4]+ cations and solvent are disordered and reside between the layers. Both 1 and 2 possess antiferromagnetic superexchange coupling between each low‐spin (S=1/2) octahedral MnII site and two high‐spin (S=5/2) tetrahedral MnII sites within a layer. Analogue 2 orders as a ferrimagnet at 27(±1) K with a coercive field and remanent magnetization of 1140 Oe and 22 800 emuOe mol?1, respectively, and the magnetization approaches saturation of 49 800 emuOe mol?1 at 90 000 Oe. In contrast, the bonding via bridging cyanides between the ferrimagnetic layers leads to antiferromagnetic coupling, and 3D structured 1 has a different magnetic behavior to 2 . Thus, 1 is a Prussian blue analogue with an antiferromagnetic ground state [Tc=27 K from d(χT)/dT].  相似文献   

7.
A dinuclear CoII complex ( 1 ) featuring unprecedented anodic and cathodic switches for single‐molecule magnet (SMM) activity has been recently investigated (J. Am. Chem. Soc. 2013 , 135, 14670). The presence of sandwiched radicals in different oxidation states of this compound mediates magnetic coupling between the high‐spin (S=3/2) cobalt ions, which gives rise to SMM activity in both the oxidized ([ 1 (OEt2)]+) and reduced ([ 1 ]?) states. This feature represents the first example of a SMM exhibiting fully reversible, dual ON/OFF switchability. Here we apply ab initio and broken‐symmetry DFT calculations to elucidate the mechanisms responsible for magnetic properties and magnetization blocking in these compounds. It is found that due to the strong delocalization of the magnetic molecular orbital, there is a strong antiferromagnetic interaction between the radical and cobalt ions. The lack of high axiality of the cobalt centres explains why these compounds possess slow relaxation of magnetization only in an applied dc magnetic field.  相似文献   

8.
A method was developed for the synthesis of mixed-metal heterospin compounds with the direct coordination of the nitroxide fragment based on the replacement of acetonitrile molecules in the heterotrinuclear complex [Co2Gd(NO3)Piv6(CH3CN)2] with nitroxide molecules. The molecular and crystal structure of the heterospin mixed-ligand heterotrinuclear CoII, GdIII, CoII complex [Co2Gd(NO3)Piv6(NIT-Me)2], where NIT-Me is stable nitronyl nitroxide, was established. The magnetic properties of this complex were investigated in the temperature range of 2–300 K. The coordination of nitroxide groups to CoII ions is responsible for strong exchange interactions between the unpaired electrons in the exchange clusters {>-·O-CoII}, resulting in the virtually complete spin coupling between each coordinated >N-·O group and one of the unpaired electrons of each CoII ion at temperatures below 200 K. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1742–1745, September, 2007.  相似文献   

9.
《Polyhedron》2007,26(9-11):2054-2058
An intermediate in photoinduced magnetization process for the photomagnetic high-spin molecule [MoIV(CN)2(CN-CuL)6]8+ is studied with quantum chemistry calculations of the density functional theory and the ab initio multireference configuration interaction methods. It is found that the intramolecular electronic transfer from MoIV to CuII leads one trigonal-bipyamid coordinated CuII to be changed to the tetrahedral coordinated CuI with the light irradiation. The calculated magnetic properties show that the paramagnetic system [MoIV(CN)2(CN-CuIIL)6]8+ with six isolated spin 1/2 Cu ions is changed to ferromagnetic coupling high-spin system [MoV(CN)2(CN-CuIIL)5(CN-CuIL)]8+. These calculations will help to understand photoinduced magnetization phenomenon and provide a clue for the synthesization of new reversible photoinduced magnetic compounds.  相似文献   

10.
Using two kinds of carboxylate ligands with small but significant differences in steric size, symmetric and asymmetric FeII and NiII cubanes have been synthesized in a controlled fashion. Fast sweeping pulsed field measurements showed magnetization hysteresis loops for two cubane‐type molecular complexes, [Ni4(μ‐OMe)4(O2CAr4F‐Ph)4(HOMe)8] and [Ni4(μ‐OMe)4(O2CArTol)4(HOMe)6], thus suggesting single‐molecule magnet behavior. To differentiate the magnetic properties between the symmetric and asymmetric cubanes, detailed electron paramagnetic resonance (EPR) measurements were performed. From the EPR data, taken at various frequencies and temperatures, zero‐field splitting parameters D, E, and other higher‐order parameters for both cubane samples were extracted. Compared to the symmetric Ni‐cubane, the asymmetric one shows an increase in the D and E values by about 20 %, thereby suggesting structural engineering effects on the magnetic properties. By using the magnetic parameters determined by EPR, a static magnetization curve at 2 K and a temperature dependence of the magnetic susceptibility were simulated. A good agreement between theoretical and experimental data confirms the validity of the values obtained from EPR measurements.  相似文献   

11.
The 3D framework [Mn3(CH3COO)2(HCOO)4]n · nDMF ( 1 ) was obtained from the assembly of MnII ions with acetate and the in‐situ generated formate ligands. It features Mn‐centered MnMn4 tetrahedral nodes, each of which is linked to another four ones by sharing the apexes to form the 3D framework of 1 . Each of the acetate and formate ligands behaves as a synsyn:anti bridge to link two apical MnII ions and the central MnII ion. The magnetic measurement of 1 revealed the coexistence of spin‐canted antiferromagnetism and metamagnetism. It represents a typical example to synergistically use two kinds of carboxylate ligands to construct metal‐organic frameworks, as well as to tune the structure and magnetic properties of the aimed complex.  相似文献   

12.
From the viewpoints of large capacity, long‐term guarantee, and low cost, interest in magnetic recording tapes has undergone a revival as an archive storage media for big data. Herein, we prepared a new series of metal‐substituted ?‐Fe2O3, ?‐GaIII0.31TiIV0.05CoII0.05FeIII1.59O3, nanoparticles with an average size of 18 nm. Ga, Ti, and Co cations tune the magnetic properties of ?‐Fe2O3 to the specifications demanded for a magnetic recording tape. The coercive field was tuned to 2.7 kOe by introduction of single‐ion anisotropy on CoII (S=3/2) along the c‐axis. The saturation magnetization was increased by 44 % with GaIII (S=0) and TiIV (S=0) substitution through the enhancement of positive sublattice magnetizations. The magnetic tape media was fabricated using an actual production line and showed a very sharp signal response and a remarkably high signal‐to‐noise ratio compared to the currently used magnetic tape.  相似文献   

13.
A huge increase in the magnetization of two coordination chains based on tetravalent octacyanidometalates (WIV and MoIV) is observed on irradiation with 436 nm light, while no such behavior is observed for the NbIV analogue. A photomagnetic response based solely on [WIV(CN)8]4− is demonstrated for the first time. The observed behavior is attributed to the light‐induced excited spin state trapping (LIESST) effect at the octacyanidometalate, and to the resulting magnetic exchange ON/OFF photoswitching between the MnII center and the photoinduced high‐spin (S =1) WIV or MoIV centers.  相似文献   

14.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

15.
This paper reports two new coordination polymers formed by carboxylate-substituted benzoimidazole and formate ligands: [Mn(L)·(HCO2)]n (1) and [Co(L)·(HCO2)]n (2) (L = benzoimidazol-1-yl-acetate). Com-plexes 1 and 2 are isomorphous and adopt a new 3,6-connected three-nodal topology showing inter-esting magnetic properties: spin canted antiferromagnetism for MnⅡ complex 1, but simple antiferro-magnetic coupling for CoⅡ complex 2.  相似文献   

16.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

17.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

18.
Summary.  In the present review, we reexamine the photomagnetic properties of the [Fe(PM-BiA)2(NCS)2], cis-bis(thiocyanato)-bis[(N-2′-pyridylmethylene)-4-(aminobiphenyl)]iron(II), compound which exhibits, depending on the synthetic method, an exceptionally abrupt spin transition (phase I) with a very narrow hysteresis (T 1/2↓ = 168 K and T 1/2↑ = 173 K) or a gradual spin conversion (phase II) occurring at 190 K. In both cases, light irradiation in the tail of the 1MLCT-LS absorption band, at 830 nm, results in the population of the high-spin state according to the light-induced excited spin-state trapping (LIESST) effect. The capacity of a compound to retain the light-induced HS information, estimated through the T(LIESST) experiment, is determined for both phases. Interestingly, the shape of the T(LIESST) curve is more gradual for the phase II than for the phase I and the T(LIESST) value is found considerably lower in the case of the phase II. The kinetics parameters involved in the photoinduced high-spin→low-spin relaxation process are estimated for both phases. From these data, the experimental T(LIESST) curves are simulated and the particular influence of the cooperativity as well as of the parameters involved in the thermally activated and tunneling regions are discussed. The Light-Induced Thermal Hysteresis (LITH), originally described for the strongly cooperative phase I, is also reinvestigated. The quasi-static LITH loop is determined by recording the photostationary points in the warming and cooling branches. Corresponding authors. E-mail: letard@icmcb.u-bordeaux.fr Received August 26, 2002; accepted August 30, 2002  相似文献   

19.
Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2] ? nSolv (TPT=[(2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine]; MI=Ag (nSolv=0, 1 MeOH, 2 CH2Cl2), Au (nSolv=0, 2 CH2Cl2)) have been synthesized and their crystal structures were determined at 120 K and 293 K by single‐crystal X‐ray analysis. These structures crystallized in the trigonal R‐3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent FeII ions, whilst each dicyanometallate group bridges two crystallographically equivalent FeII ions that define a 3D network with the topology of NbO. There are two such networks, which interpenetrate each other, thereby giving rise to large spaces in which very labile solvent molecules are included (CH2Cl2 or MeOH). Crystallographic analysis confirmed the reversible structural changes that were associated with the occurrence of spin‐crossover behaviour at the FeII ions, the most significant structural variation being the change in unit‐cell volume (about 59 Å3 per FeII ion). The spin‐crossover behaviour has been monitored by means of thermal dependence of the magnetic properties, Mössbauer spectroscopy, and calorimetry.  相似文献   

20.
The local symmetry and local magnetic properties of 6 nm‐sized, bimetallic, cyanide‐bridged CsNiCr(CN)6 coordination nanoparticles 1 and 8 nm‐sized, trimetallic, CsNiCr(CN)6@CsCoCr(CN)6 core–shell nanoparticles 2 were studied by X‐ray absorption spectroscopy (XAS) and X‐ray magnetic circular dichroism (XMCD). The measurements were performed at the NiII, CoII, and CrIII L2,3 edges. This study revealed the presence of distorted NiII sites located on the particle surface of 1 that account for the uniaxial magnetic anisotropy observed by SQUID measurements. For the core–shell particles, a combination of the exchange anisotropy between the core and the shell and the pronounced anisotropy of the CoII ions is the origin of the large increase in coercive field from 120 to 890 Oe on going from 1 to 2 . In addition, XMCD allows the relative orientation of the magnetic moments throughout the core–shell particles to be determined. While for the bimetallic particles of 1 , alignment of the magnetic moments of CrIII ions with those of NiII ions leads to uniform magnetization, in the core–shell particles 2 the magnetic moments of the isotropic CrIII follow those of CoII ions in the shell and those of NiII ions in the core, and this leads to nonuniform magnetization in the whole nanoobject, mainly due to the large difference in local anisotropy between the CoII ions belonging to the surface and the NiII ions in the core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号