首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analytical distinction of the most common isomeric underivatized hexoses was investigated by means of mass spectrometry experiments. Electrospray ionization and tandem mass spectrometry were used in the analysis of silver and copper-coordinated monosaccharides (D-glucose, D-galactose, D-fructose, O-methyl-alpha-D-glucose and O-methyl-beta-D-glucose). The results show that cationization by Ag(+) allows the differentiation of the three first monosaccharides while the complexes formed by association of Cu(+) with these three monosacharides display a similar reactivity that prevents stereoisomer distinction. Unlike copper, silver adduct-ions of both alpha and beta anomeric O-methyl-D-glucoses exhibit specific decomposition patterns (i.e. a loss of methanol for the alpha-anomer and a loss of silver hydride for the beta-anomer), which allow an easy characterization. A theoretical survey of selected complexes, based on the use of DFT calculations were carried out on both anomers in order to rationalize the experimental findings.  相似文献   

2.
cis-Diamminedichloroplatinum(II) (cisplatin, DDP) is a cornerstone of anticancer therapy and has become one of the most widely used drugs for the treatment of various epithelial malignancies. The cytotoxicity of cisplatin is mainly based upon its affinity to adjacent guanines in nucleic acids, resulting in the formation of 1,2-intrastrand adducts. In this study the gas-phase dissociation of DNA- and RNA-cisplatin adducts is investigated by electrospray ionization (ESI) tandem mass spectrometry (MS/MS). The fundamental mechanistic aspects of fragmentation are elucidated to provide the basis for the tandem mass spectrometric determination of binding motifs and binding sites of this important anticancer drug. It is shown that the binding of cisplatin to vicinal guanines drastically alters the gas-phase fragmentation behavior of oligonucleotides. The 3′-C-O bond adjacent to the GG base pair is preferentially cleaved, leading to extensive formation of the corresponding w-ion. This observation was even made for oligoribonucleotides, which usually tend to form c- and y-ions under CID conditions. The absence of complementary ions of equal abundance indicates that oligonucleotide-cisplatin adducts are following more than one dissociation pathway in the gas-phase. Several mechanisms that explain the increased cleavage of the 3′-C-O bond and the lack of the complementary a-ion are proposed. Results of additional MS/MS experiments on methylphosphonate-oligodeoxynucleotides confirm the proposed mechanisms.  相似文献   

3.
More than 310 kinds of cluster ions of S(m) P(n) H(k) (k+) are observed in a single ESI mass spectrum of a mixed solution of serine and phosphoric acid. Some typical cluster ions are selected, activated by collision in a FT ICR cell, and the dissociation pathways were deduced in detail. For large singly protonated ions, the collisions cause the ejection of subunits of serine or phosphoric acid subsequently producing the ions of S(2) P(4) H(1) (1+) , which can be further dissociated by the loss of phosphoric acid molecules in turn and form the protonated serine dimer and monomer. However, for the doubly protonated ions, the dissociation pathways change from the loss of a protonated serine dimer for the ions of S(7) P(9) H(2) (2+) to the neutral loss of H(3) PO(4) for the ions of S(7) P(12) H(2) (2+) or the neutral loss of serine or H(3) PO(4) for the larger clusters, indicating the effect of cluster sizes on the process of dissociation. The structure of S(2) P(4) H(1) (1+) is suggested based on B3LYP/6-31G(d,p) calculations. The diversity and structural orderliness of the hetero-cluster ions are mainly attributed to the network of hydrogen bonds inside the cluster ions and the extraordinary amphotericity of the components.  相似文献   

4.
Anabolic steroids are structurally similar compounds, and their product-ion spectra obtained by tandem mass spectrometry under electrospray ionization conditions are quite difficult to interpret because of poly-ring structures and lack of a charge-retaining center in their chemical structures. In the present study, the fragmentation of nine anabolic steroids of interest to the racing industry was investigated by using triple quadrupole mass spectrometer, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and a linear ion trap instrument. With the aid of an expert system software (Mass Frontier version 3.0), accurate mass measurements, and multiple stage tandem mass spectrometric (MS(n)) experiments, fragmentation pathways were elucidated for boldenone, methandrostenolone, tetrahydrogestrinone (THG), trenbolone, normethandrolone and mibolerone. Small differences in the chemical structures of the steroids, such as an additional double-bond or a methyl group, result in significantly different fragmentation pathways. The fragmentation pathways proposed in this paper allow interpretation of major product ions of other anabolic steroids reported by other researchers in a recent publication. The proposed fragmentation pathways are helpful for characterization of new steroids. The approach used in this study for elucidation of the fragmentation pathways is helpful in interpretation of complicated product-ion spectra of other compounds, drugs and their metabolites.  相似文献   

5.
The relative gas-phase stabilities of seven quadruplex DNA structures, [d(TG(4)T)](4), [d(T(2)G(3)T)](4), [d(G(4)T(4)G(4))](2), [d(T(2)AG(3))(2)](2), d(T(2)AG(3))(4), d(T(2)G(4))(4), and d(G(2)T(4))(4), were investigated using molecular dynamics simulations and electrospray ionization mass spectrometry (ESI-MS). MD simulations revealed that the G-quadruplexes maintained their structures in the gas phase although the G-quartets were distorted to some degree and ammonium ions, retained by [d(TG(4)T)](4) and [d(T(2)G(3)T)](4), played a key role in stabilizing the tetrad structure. Energy-variable collisional activated dissociation was used to assess the relative stabilities of each quadruplex based on E(1/2) values, and the resulting order of relative stabilities was found to be [d(TG(4)T)](4) > d(T(2)AG(3))(4) approximately d(T(2)G(4))(4) > [d(T(2)G(3)T)](4) > [d(T(2)AG(3))(2)](2) approximately d(G(2)T(4))(4) approximately [d(G(4)T(4)G(4))](2.) The stabilities from the E(1/2) values generally paralleled the RMSD and relative free energies of the quadruplexes based on the MD energy analysis. One exception to the general agreement is [d(G(4)T(4)G(4))](2), which had the lowest E(1/2) value, but was determined to be the most stable quadruplex according to the free-energy analysis and ranked fourth based on the RMSD comparison. This discrepancy is attributed to differences in the fragmentation pathway of the quadruplex.  相似文献   

6.
The potential of electrospray ionization (ESI) mass spectrometry (MS) to detect non-covalent protein complexes has been demonstrated repeatedly. However, questions about correlation of the solution and gas-phase structures of these complexes still produce vigorous scientific discussion. Here, we demonstrate the evaluation of the gas-phase binding of non-covalent protein complexes formed between bovine pancreatic trypsin inhibitor (BPTI) and its target enzymes over a wide range of dissociation constants. Non-covalent protein complexes were detected by ESI-MS. The abundance of the complex ions in the mass spectra is less than expected from the values of the dissociation constants of the complexes in solution. Collisionally activated dissociation (CAD) tandem mass spectrometry (MS/MS) and a collision model for ion activation were used to evaluate the binding of non-covalent complexes in the gas phase. The internal energy required to induce dissociation was calculated for three collision gases (Ne, Ar, Kr) over a wide range of collision gas pressures and energies using an electrospray ionization source. The order of binding energies of the gas-phase ions for non-covalent protein complexes formed by the ESI source and assessed using CAD-MS/MS appears to differ from that of the solution complexes. The implication is that solution structure of these complexes was not preserved in the gas phase.  相似文献   

7.
Fully-protected C-terminal free peptides can be conveniently analyzed by high-resolution electrospray tandem mass spectrometry (ESI-MS/MS) in a quadrupole quadrupole time-of-flight tandem hybrid mass spectrometer, operated in the negative (-) ionizaionization mode. The unusual choice of negative ions in mass spectrometry applications to peptide analysis was needed to obtain exhaustive sequence and structural data. The low-energy collision-induced dissociation (CID) experiments provided, in fact, tandem mass spectra displaying highly diagnostic fragments with a good signal-to-noise ratio. The method is applied to segments of porcine calcitonin (Cal), Cal (1016, 1), Cal (1724, 2) and Cal (2528, 3) whose [M H]- deprotonated molecular ions provided low-energy CID mass spectra which allow the evaluation either of the primary structure of the peptide and of the location of the side-chain protective groups. ESI (+) MS can be conveniently used, in the high resolution mode, to achieve precise information on the elemental composition of the examined peptides.  相似文献   

8.
9.
Negative-ion electrospray ionization tandem quadrupole mass spectrometry provides a useful method for the structural characterization of ceramides. Fragment ions referring to the identities of the fatty acid substituent and of the long chain base of the molecules are readily available and the structure of ceramides can be easily determined. A unique fragmentation pathway which leads to formation of the fatty acid carboxylate anions (RCO2) was observed. This fragmentation is initiated by cleavage of the C2-C3 bond of the LCB to yield a N-acylaminoethanol anion ([RCONHCH2CH2O]-), followed by rearrangement to a carboxyethylamine ([RCO2CH2CH2NH]-) intermediate, which further dissociates to a RCO2- ion. This pathway is confirmed by the CAD tandem mass spectrum of the synthetic N-acylaminoethanol standard and of the deuterated analogs of ceramides obtained by H-D exchange. The observation of RCO2- ion species permits an unambiguous identification of the fatty acyl moiety of ceramides. Tandem mass spectrometry methods for characterization of structural isomers of ceramides using product-ion scanning and for identification of specific ceramide subclasses in biological mixtures using neutral loss scanning are also demonstrated.  相似文献   

10.
Non-covalent interactions between met- and leu-enkephalins and their antisense peptides were studied by electrospray ionization mass spectrometry. Mixtures of sense and antisense peptides gave both the corresponding homodimers and heterodimers. The relative abundance ratios of the heterodimer to that of the homodimer of the sense peptide and the relative stability constants of the heterodimers were compared with the corresponding values from mixtures of the sense peptides and a control peptide. The results show that there is a preferential interaction between the sense and antisense peptides compared with that between the sense and control peptides.  相似文献   

11.
Three samples of albumin derived from human plasma (pharmaceutical grade, HSA) obtained from different commercial sources were investigated for their micro-heterogeneities by means of electrospray ionization (ESI) ion trap mass spectrometry (ITMS). The study covered MS analyses of the intact proteins as well as on the tryptic peptide level. The intact protein samples were analyzed without any separation step except for simple desalting. With these samples we observed in the positive ion ESI mass spectra that the multiply charged ion signals of HSA consisted of a number of fully or partly resolved peaks with relative intensities depending on the analyzed sample. The non-modified form of HSA was detected in the three HSA preparations at m/z values of 66448 +/- 3.6, 66450 +/- 0.6 and 66451 +/- 3.2 ([MH]+), respectively. The value calculated from the amino acid sequence was 66439. The second compound present with high intensity (in two cases the base peak in the deconvoluted mass spectrum) is interpreted as a modified HSA, and the molecular mass increase in relation to the unmodified HAS was between 116 and 118 Da (m/z of 66 564, 66 567 and 66 569), suggesting the presence of a covalently bound cysteine residue. A further peak in the deconvoluted ESI spectra was found in all three samples with rather low signal/noise ratio at m/z 66 619, 66 621 and 66 613, respectively, which may correspond to a non-enzymatic glycation described in the literature. The verification of the proposed covalent HSA modifications was subsequently done on the peptide level using high-performance liquid chromatography (HPLC)/ESI-MS and HPLC/ESI-MS/MS including low-energy collision-induced dissociation (CID). Prior to the tryptic digestion, the HSA samples were alkylated without a prior reduction step. Following this procedure we detected peptides of the sequence T21-41 that included the Cys-34 residue in both forms: cysteinylated (m/z 639.15 [M+4H]4+) as well as vinylpyridine-alkylated (m/z 635.69 [M+4H]4+, which means in its previously native free SH form). In the next step on-line LC/ESI low-energy CID MS/MS experiments were performed to verify these two proposed structures. By means of MS/MS analysis of the mentioned ions the described modification (cysteinylation) at the Cys-34 residue could be proven. This abundant modification of HSA in pharmaceutical-grade preparations could be unambiguously identified as cysteinylation at the Cys-34 residue. On the other hand, the proposed non-enzymatic glycation was not detectable on the peptide level in the on-line HPLC/ESI-MS mode, maybe due to the low concentration in the three samples under investigation.  相似文献   

12.
The fragmentation patterns of a series of three novel synthesized 3-hydroxy-4-phenyl-tetrahydro-1,5-benzodiazepin-2-ones (1-3), possessing the same backbone structure, were investigated using electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) techniques. A simple methodology, based on the use of ESI (positive ion mode) and by increasing the declustering potential in the atmospheric pressure/vacuum interface, collision-induced dissociation (CID), was used to enhance the formation of the fragment ions. In general, the novel synthetic 1,5-benzodiazepine derivatives afforded, in the gas phase, both protonated and sodiated molecules. This led to the confirmation of the molecular masses and chemical structures of the studied compounds. Exact accurate masses were measured using a high-resolution ESI-quadrupole orthogonal time-of-flight (QqToF)-MS/MS hybrid mass spectrometer instrument.The breakdown routes of the protonated molecules were rationalized by conducting low-energy collision CID-MS/MS analyses (product ion- and precursor ion scans) using a conventional quadrupole-hexapole-quadrupole (QhQ) tandem mass spectrometer. All the observed major fragmentations for the 1,5-benzodiazepines occurred in the saturated seven-membered ring containing the nitrogen atoms. These formed a multitude of product ions by different breakdown routes. All the major fragmentations involved cleavages of the N-1-C-2 and C-3-C-4 bonds. These occurred with concomitant eliminations of glyoxal, benzene and ethyl formate, forming the product ion at m/z 119, which was observed in all the studied compounds. In addition, an unique simultaneous CID-MS/MS fragmentation was noticed for the 1,5-benzodiazepines 1 and 3, which occurred by a pathway dictated by the substituent located on the N-1-position. It was evident that the aromatic ring portion of the 1,5-benzodiazepines was resistant to CID-MS/MS fragmentation. Re-confirmation of the various geneses of the product ions was achieved by conducting a series of precursor ion scans. ESI-MS and CID-MS/MS analyses have thus proven to be a specific and very sensitive method for the structural identification of these novel 1,5-benzodiazepine derivatives.  相似文献   

13.
We used solution-phase hydrogen/deuterium (H/D) exchange and multistage tandem mass spectrometry (MS/MS) experiments in an electrospray ion-trap mass spectrometer operating in the negative-ion mode to investigate the consequences of the loss of a high proton-affinity (PA) base from T-rich tetra and hexadeoxynucleotides. The T-rich oligodeoxynucleotides containing one or two other nucleobases take advantage of the mass spectral inertness of T because fragmentation of a T-rich oligomer is simple, allowing a tight focus on those processes of interest. Furthermore, determination of T-rich oligodeoxynucleotides may be a starting point in the development of a mass spectrometric scheme to understand the mutagenicity of various types of DNA damage by UV radiation. For nine oligodeoxynucleotides, the nucleobases were charged by nearly exclusive D transfer and then expelled as neutral bases. Loss of the base located at the 3' end is preferred over that from the 5' terminus when the two bases are identical. The observation of partially exchanged fragments from a completely exchanged precursor ion proves intramolecular H/D exchange between hydrogen atoms that can exchange in water and those that cannot. The multiplicity of the product-ion peaks provides information on decomposition pathways and origins of the product ions and shows that the loss of base is the first step in all fragmentation of hexanucleotides, but is a competitive process for tetranucleotide fragmentation.  相似文献   

14.
Reactions of two platinum(II) complexes, cis-[Pt(NH3)2(H2O)2]2+ (Pt1) and cis-[Pt(en)(H2O)2]2+ (Pt2), with several sulfur-containing peptides, have been investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). The species produced in the reactions were detected with ESI-MS, and MS/MS analysis was performed to probe structural information. Collision-induced dissociation revealed different dissociation pathways for the main reaction products of the two platinum(II) complexes with the same peptides. The major difference is the prominent loss of ammonia ligand for complexes of Pt1 due to the strong trans effect of sulfur, whereas the loss of ethylenediamine (en) ligand from Pt2 complexes is less favored, reflecting the chelating effect of the bidentate ligand. Despite the differences in dissociation patterns, Pt1 and Pt2, in general, form structurally similar complexes with the same peptides. In the reactions with Met-Arg-Phe-Ala they both produce a N,S-chelate ring through the N-terminal NH2 and sulfur of the Met residue, and in the reactions with Ac-Met-Ala-Ser they bind to the sulfur of Met and deprotonate an amide nitrogen upstream from the anchor site. Both of them are able to promote hydrolysis of the peptides. In reactions with glutathione they both form four-membered Pt2S2 rings and Pt-S-Pt bonding through the bridging thiolate ligand, although the reaction rate is much slower for Pt2 due to steric hindrance of the en ligand.  相似文献   

15.
16.
The effect of alkali metal and silver cationization on the collision-induced dissociation (CID) of loganin (1), epi-loganin (2) and ketologanin (3) is discussed. Their protonated molecular ions fragment mainly by glycosidic cleavages. The epimeric pairs (1 and 2) show differences in the abundances of the resulting fragment ions. Lithium cationization induces new dissociation pathways such as the retro-Diels-Alder (RDA) fragmentation followed by rearrangement. Unlike the dissociation of protonated molecular ions, the dissociation of lithiated molecules also provides lithiated sugar fragments. The CID of dilithiated molecules is substantially different from that of the monolithiated precursors. RDA reaction appears to be favoured by the presence of the additional lithium atom in the molecule. In addition, other ring cleavages are also induced. The abundances of the various fragment ions are different in the CID spectra of the epimeric pairs. Extensive D labelling and (6)Li labelling experiments confirmed many of the ion structures proposed. The CID spectra of the sodiated ions are generally weaker, although similar to those of the corresponding lithiated species. Higher alkali metal ion (K(+), Rb(+) and Cs(+)) adducts generated only the corresponding metal ions as products of CID. Similar fragmentations were also observed in the CID of the [M + Ag](+) ions of these compounds, the epimeric pairs showing characteristic differences in their CID behaviour. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Electrospray ionization mass spectrometry (ESI-MS) is a novel tool for the investigation of chemical reactions in solution and for the direct detection and identification of reactive intermediates. The tributyltin hydride mediated addition of tert-butyl iodide to dimethyl 2-cyclohexyl-4-methyleneglutarate (2) in the presence of Lewis acids was investigated by ESI-MS using a microreactor coupled on-line to an ESI mass spectrometer. For the first time we have been able to show that transient radicals in radical chain reactions can be detected unambiguously under steady-state conditions in the reaction solution and can be characterized by ESI-MS/MS and accurate mass determination. The detection of different heterodimer radical complexes by ESI-MS/MS has provided new insights into the mechanism of Lewis acid controlled radical chain reactions. Dimeric chelate complexes of glutarates, such as 2 and 3, and Lewis acids, like Sc(OTf)3, MgBr2OEt2 and LiClO4, were observed as well as higher aggregates with additional equivalents of Lewis acid. Evidence for a dynamic equilibrium of the complexes in solution was found by NMR spectroscopy. The ESI-MS investigation of the chelation of glutarate 2 with various Lewis acids has led to the conclusion that the tendency for Lewis acids to form dimeric chelate complexes and higher aggregates has an important effect on the stereoselective outcome of the radical reactions.  相似文献   

18.
The association properties of natural and non-natural amino acids were studied in detail using electrospray ionization mass spectrometry. The results show a highly diverse cluster formation behavior of amino acids. There are differences regarding the degree of clustering (average cluster size), the presence or absence of one or several 'magic' clusters of special stability and the influence of chirality on cluster stability. Cluster formation does not show a good correlation with simple physico-chemical properties (such as solubility), indicating that it is a specific process and not only a simple aggregation during evaporation/ionization. A systematic study of cluster formation of serine derivatives reveals that all functional groups play a prominent role in the binding of the magic octamer. The results support the idea of the zwitterionic character of the octamer. Electrospray ionization of the side-chain acetylated serine shows the formation of a very stable tetramer with a strong preference for homochirality. The results suggest that Ser8 is made up of two tetramer subunits, held together by hydrogen bonds of the side-chain.  相似文献   

19.
Diiodothyronines 3,5-diiodothyronine (3,5-T2), 3',5'-diiodothyronine (3',5'-T2), and 3,3'-diiodothyronine (3,3'-T2) are important metabolites of 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3; reverse T3). In this paper, a novel and rapid method for identifying and quantifying 3,5-T2, 3',5'-T2 and 3,3'-T2 has been introduced using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Fragmentation patterns were proposed on the basis of our data obtained by ESI-MS/MS. MS2 spectra in either negative ionization mode or positive ionization mode can be used to differentiate 3,5-T2, 3',5'-T2 and 3,3'-T2. On the basis of the relative abundance of fragment ions in MS2 spectra under the positive ionization mode, quantification of the 3,5-T2, 3',5'-T2 and 3,3'-T2 isomers in mixtures is also achieved without prior separation.  相似文献   

20.
In this work two monoiodothyronines, 3-T1 and 3'-T1, have been analyzed using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Fragmentation patterns were proposed based on our data obtained by ESI-MS/MS. MS2 spectra in either negative or positive ion mode can be used to differentiate 3-T1 and 3'-T1. Based on the relative abundance of fragment ions in MS2 spectra in the negative ion mode, quantification of the 3-T1 and 3'-T1 isomers in mixtures is achieved without prior separation. Solid-phase extraction in combination with ESI-MS/MS provides a practicable procedure that can be used to determine the molar ratio of 3-T1 and 3'-T1 in human serum with an error less than 3%. The detection limits for 3-T1 and 3'-T1 were 0.5 and 0.7 pg/microL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号