首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G is a graph of order at least 3k with . Then G contains k vertex-disjoint cycles. Received: April 23, 1998  相似文献   

2.
A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investigate the relationships between the matching and total domination number of a graph. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number, and we show that every k-regular graph with k?3 has total domination number at most its matching number. In general, we show that no minimum degree is sufficient to guarantee that the matching number and total domination number are comparable.  相似文献   

3.
A set S of vertices in a graph G is a total dominating set, denoted by TDS, of G if every vertex of G is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). If G does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek, P.C.B. Lam, S. Seager, B. Wei, R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004) 207-210.] that if G is a graph of order n with minimum degree at least three, then γt(G)?n/2. Two infinite families of connected cubic graphs with total domination number one-half their orders are constructed in [O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9-19.] which shows that this bound of n/2 is sharp. However, every graph in these two families, except for K4 and a cubic graph of order eight, contains a claw. It is therefore a natural question to ask whether this upper bound of n/2 can be improved if we restrict G to be a connected cubic claw-free graph of order at least 10. In this paper, we answer this question in the affirmative. We prove that if G is a connected claw-free cubic graph of order n?10, then γt(G)?5n/11.  相似文献   

4.
A set S of vertices in a graph G is a total dominating set (TDS) of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a TDS of G is the total domination number of G, denoted by γt(G). A graph is claw-free if it does not contain K1,3 as an induced subgraph. It is known [M.A. Henning, Graphs with large total domination number, J. Graph Theory 35(1) (2000) 21-45] that if G is a connected graph of order n with minimum degree at least two and G∉{C3,C5, C6, C10}, then γt(G)?4n/7. In this paper, we show that this upper bound can be improved if G is restricted to be a claw-free graph. We show that every connected claw-free graph G of order n and minimum degree at least two satisfies γt(G)?(n+2)/2 and we characterize those graphs for which γt(G)=⌊(n+2)/2⌋.  相似文献   

5.
We prove that if G is a graph of order at least 2k with k ? 9 and the minimum degree of G is at least k + 1, then G contains two vertex-disjoint cycles of order at least k. Moreover, the condition on the minimum degree is sharp.  相似文献   

6.
Let G be a graph such that none of its components is bipartite. We describe the facets of the cone generated by the columns of the incidence matrix of G. Let k[G] be the subring generated by the monomials of degree two defining the edges of G, where k is a field. Some estimates for the a-invariant of k[G] are shown when G is the cone of a normal connected non bipartite graph or G is the join of two normal connected non bipartite graphs. Received: 24 July 1997 / Revised version: 3 March 1998  相似文献   

7.
A graph G with no isolated vertex is total domination vertex critical if for any vertex v of G that is not adjacent to a vertex of degree one, the total domination number of G-v is less than the total domination number of G. These graphs we call γt-critical. If such a graph G has total domination number k, we call it k-γt-critical. We characterize the connected graphs with minimum degree one that are γt-critical and we obtain sharp bounds on their maximum diameter. We calculate the maximum diameter of a k-γt-critical graph for k?8 and provide an example which shows that the maximum diameter is in general at least 5k/3-O(1).  相似文献   

8.
Given a graph G with n vertices, we call ck(G) the minimum number of elementary cycles of length at most k necessary to cover the vertices of G. We bound ck(G) from the minimum degree and the order of the graph.  相似文献   

9.
We show that a graph of girth greater than 6 log k+3 and minimum degree at least 3 has a minor of minimum degree greater than k. This is best possible up to a factor of at most 9/4. As a corollary, every graph of girth at least 6 log r+3 log log r+c and minimum degree at least 3 has a K r minor.  相似文献   

10.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. In 1998, Haynes et al. considered the graph theoretical representation of this problem as a variation of the domination problem. They defined a set S to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The power domination number γP(G) of a graph G is the minimum cardinality of a power dominating set of G. In this paper, we present upper bounds on the power domination number for a connected graph with at least three vertices and a connected claw-free cubic graph in terms of their order. The extremal graphs attaining the upper bounds are also characterized.  相似文献   

11.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

12.
Dedicated to the memory of Paul Erdős A graph G is k-linked if G has at least 2k vertices, and, for any vertices , , ..., , , , ..., , G contains k pairwise disjoint paths such that joins for i = 1, 2, ..., k. We say that G is k-parity-linked if G is k-linked and, in addition, the paths can be chosen such that the parities of their lengths are prescribed. We prove the existence of a function g(k) such that every g(k)-connected graph is k-parity-linked if the deletion of any set of less than 4k-3 vertices leaves a nonbipartite graph. As a consequence, we obtain a result of Erdős–Pósa type for odd cycles in graphs of large connectivity. Also, every -connected graph contains a totally odd -subdivision, that is, a subdivision of in which each edge of corresponds to an odd path, if and only if the deletion of any vertex leaves a nonbipartite graph. Received May 13, 1999/Revised June 19, 2000  相似文献   

13.
choice number of a graph G is the minimum integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). It is shown that the choice number of the random graph G(n, p(n)) is almost surely whenever . A related result for pseudo-random graphs is proved as well. By a special case of this result, the choice number (as well as the chromatic number) of any graph on n vertices with minimum degree at least in which no two distinct vertices have more than common neighbors is at most . Received: October 13, 1997  相似文献   

14.
A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is adjacent to a vertex of S. We study graphs whose vertex set can be partitioned into two total dominating sets. In particular, we develop several sufficient conditions for a graph to have a vertex partition into two total dominating sets. We also show that with the exception of the cycle on five vertices, every selfcomplementary graph with minimum degree at least two has such a partition.  相似文献   

15.
We show that if G is a 3-connected graph of minimum degree at least 4 and with |V (G)| ≥ 7 then one of the following is true: (1) G has an edge e such that G/e is a 3-connected graph of minimum degree at least 4; (2) G has two edges uv and xy with ux, vy, vxE(G) such that the graph G/uv/xy obtained by contraction of edges uv and xy in G is a 3-connected graph of minimum degree at least 4; (3) G has a vertex x with N(x) = {x1, x2, x3, x4} and x1x2, x3x4E(G) such that the graph (G ? x)/x1x2/x3x4 obtained by contraction of edges x1x2 and x3x4 in Gx is a 3-connected graph of minimum degree at least 4.

Each of the three reductions is necessary: there exists an infinite family of 3- connected graphs of minimum degree not less than 4 such that only one of the three reductions may be performed for the members of the family and not the two other reductions.  相似文献   

16.
Let G be a k-connected simple graph with order n. The k-diameter, combining connectivity with diameter, of G is the minimum integer d k (G) for which between any two vertices in G there are at least k internally vertex-disjoint paths of length at most d k (G). For a fixed positive integer d, some conditions to insure d k (G)⩽d are given in this paper. In particular, if d⩾3 and the sum of degrees of any s (s=2 or 3) nonadjacent vertices is at least n+(s−1)k+1−d, then d k (G)⩽d. Furthermore, these conditions are sharp and the upper bound d of k-diameter is best possible. Supported by NNSF of China (19971086).  相似文献   

17.
F on s edges and k disjoint cycles. The main result is the following theorem. Let F be a forest on s edges without isolated vertices and let G be a graph of order at least with minimum degree at least , where k, s are nonnegative integers. Then G contains the disjoint union of the forest F and k disjoint cycles. This theorem provides a common generalization of previous results of Corrádi & Hajnal [4] and Brandt [3] who considered the cases (cycles only) and (forests only), respectively. Received: October 13, 1995  相似文献   

18.
《Quaestiones Mathematicae》2013,36(3):339-348
Abstract

For n a positive integer and v a vertex of a graph G, the nth order degree of v in G, denoted by degnv, is the number of vertices at distance n from v. The graph G is said to be nth order regular of degree k if, for every vertex v of G, degnv = k. The following conjecture due to Alavi, Lick, and Zou is proved: For n ≥ 2, if G is a connected nth order regular graph of degree 1, then G is either a path of length 2n—1 or G has diameter n. Properties of nth order regular graphs of degree k, k ≥ 1, are investigated.  相似文献   

19.
How to decrease the diameter of triangle-free graphs   总被引:3,自引:0,他引:3  
Assume that G is a triangle-free graph. Let be the minimum number of edges one has to add to G to get a graph of diameter at most d which is still triangle-free. It is shown that for connected graphs of order n and of fixed maximum degree. The proof is based on relations of and the clique-cover number of edges of graphs. It is also shown that the maximum value of over (triangle-free) graphs of order n is . The behavior of is different, its maximum value is . We could not decide whether for connected (triangle-free) graphs of order n with a positive ε. Received: October 12, 1997  相似文献   

20.
A graph is said to be claw-free if it does not contain an induced subgraph isomorphic to K 1,3. Let K 4 ? be the graph obtained by removing exactly one edge from K 4 and let k be an integer with k ? 2. We prove that if G is a claw-free graph of order at least 13k ? 12 and with minimum degree at least five, then G contains k vertex-disjoint copies of K 4 ? . The requirement of number five is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号