首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption and thermally-induced dissociation of disilane (Si2H6) on clean Ge(001)2 × 1 surfaces have been investigated using a combination of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS), reflection high-energy electron diffraction (RHEED), and scanning tunneling microscopy (STM). With initial Si2H6 exposure at room temperature, the Si surface coverage increased monotonically, the EELS surface dangling bond peak intensities continuously decreased, and the intensity of half-order RHEED diffraction rods decreased. The low-coverage Si2H6 sticking probability at 300 K on Ge(001) was found to be 0.5 while the saturation coverage was 0.5 ML. A new EELS feature, GSH, involving Si-H and Ge-H bond states was observed at Si2H6 exposures φ 3.4 × 1013 cm−2. In contrast to Si2H6 -saturated Si(001), the saturated Ge(001) surface significant fraction of dimerized bonds. Adsorbed overlayers were highly disordered with the primary species on saturated surfaces being SiH2, GeH, and undissociated SiH3· Si2H6-saturated Ge(001)2 × 1 substrates were annealed for l min at temperatures Ta between 425 and 825 K. Admolecules were mobile at Ta = 545 K giving rise to significant ordering in one-dimensional chains. By Ta = 605 K, essentially all of the admolecules were captured into coarsened islands. Dangling-bond EELS peaks reappeared by 625 K and the intensities of the half-order RHEED diffraction rods increased. Ge segregation to the surface, which began at Ta 625 K, occurred rapidly at Ta 675 K. All H was desorbed by 725 K.  相似文献   

2.
Structural, energetics, and mechanistics aspects of initial steps of the reaction of a N atom with Si(1 0 0)-2×1 modeled by the Si9H12+N system are reported. Hybrid density functional B3LYP calculations predict a barrierless first step leading to an adsorbate where N is bound to one of the dimer Si. Two possible activated routes for internal rearrangements were found, with that leading to the incorporation of Si below the first layer predicted to be kinetically dominant (98%) under the experimental conditions. This structure and frequency calculations are consistent with the experimental finding of a planar NSi3 moeity and with the experimental SiN asymmetric stretching frequency of the NSi3 groups.  相似文献   

3.
The water adsorption on the bare and H-terminated Si(1 0 0) surfaces has been studied by the BML-IRRAS technique. It is found that H-terminated surfaces are much less reactive compared to the bare silicon surfaces. The (1 × 1)-H and (3 × 1)-H surfaces show similar and less reactivity pattern compared to the (2 × 1)-H surface. At higher exposures, the water reaction with coupled monohydride species provides an effective channel for oxygen insertion into the back bonds of dihydride species. It is not attributed to the H–Si–Si–H + H2O → H–S–Si–OH + H2, which could give rise to the characteristic Si–H and Si–OH modes, respectively at 2081 and 921 cm−1. A more suitable reaction mechanism involving a metastable species, H–Si–Si–H + H2O → H2Si  HO–Si–H (metastable) explains well the bending modes of oxygen inserted silicon dihydride species which are observed relatively strongly in the reaction of water with H-terminated Si(1 0 0) surfaces.  相似文献   

4.
S. Wright  O. Dippel  E. Hasselbrink   《Surface science》1997,390(1-3):209-213
The photochemical mechanisms leading to the desorption and fragmentation of Si2H6 adsorbed on a hydrogen terminated Si(100) surface have been explored by recording the time-of-flight distributions of products escaping from the surface and by using electron energy loss spectroscopy to probe possible electronic excitations. Photodesorption of intact Si2H6 involves hot electrons that lose energy and move to the conduction band edge before initiating desorption. When the wavelength of the incident light is 193 nm, Si2H6 fragments give mostly Si, SiH2, H2 and SiH4, but this pathway is quenched at longer wavelengths. This is consistent with direct excitation, but we also show that a negative ion resonance is accessible to substrate electrons that have been excited by 193 nm light.  相似文献   

5.
6.
A complete inspection of the capabilities of reflectance anisotropy spectroscopy (RAS) in studying the adsorption of molecules or atoms on the Si(0 0 1)-(2 × 1) surface is presented. First, a direct comparison between RA spectra recorded on the clean Si(0 0 1)-(2 × 1) and the corresponding topography of the surface obtained using scanning tunneling microscopy (STM) allows us to quantify the mixing of the two domains that are present on the surface. Characteristic RA spectra recorded for oxygen, hydrogen, water, ethylene, benzene are compared to try to elucidate the origin of the optical structures. Quantitative and qualitative information can be obtained with RAS on the kinetics of adsorption, by monitoring the RA signal at a given energy versus the dose of adsorbate; two examples are presented: H2/Si(0 0 1) and C6H6/Si(0 0 1). Very different behaviours in the adsorption processes are observed, making of this technique a versatile tool for further investigations of kinetics.  相似文献   

7.
Adsorption and decomposition of triethylindium (TEI: (C2H5)3In) on a GaP(0 0 1)-(2×1) surface have been studied by low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). It is found from the TPD result that ethyl radical and ethylene are evolved at about 300–400 and 450–550 K, respectively, as decomposition products of TEI on the surface. This result is quite different from that on the GaP(0 0 1)-(2×4) surface. The activation energy of desorption of ethyl radical is estimated to be about 93 kJ/mol. It is suggested that TEI is adsorbed molecularly on the surface at 100 K and that some of TEI molecules are dissociated into C2H5 to form P–C2H5 bonds at 300 K. The vibration modes related to ethyl group are decreased in intensity at about 300–400 and 450–550 K, which is consistent with the TPD result. The TEI molecules (including mono- and di-ethylindium) are not evolved from the surface. Based on the TPD and HREELS results, the decomposition mechanism of TEI on the GaP(0 0 1)-(2×1) surface is discussed and compared with that on the (2×4) surface.  相似文献   

8.
To evaluate the interactions between the atoms of Au, Ag and Cu and clean Si(1 1 1) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom.  相似文献   

9.
The surface morphological change at an initial stage of thermal oxidation on Si(0 0 1) surface with O2 was investigated as a function of oxide coverage by a real-time monitoring method of Auger electron spectroscopy (AES) combined with reflection high energy electron diffraction (RHEED). At 653 °C where oxide islands grow laterally, protrusions were observed to develop under the oxide islands as a consequence of concurrent etching of the surface. The rate of etching was measured from a periodic oscillation of RHEED half-order spot intensity I(1/2,0) and I(0,1/2). At 549 °C where Langmuir-type adsorption proceeds, it was observed that both I(1/2,0) and I(0,1/2) decrease more rapidly in comparison with an increase of oxide coverage and the intensity ratio between them decreases gradually with O2 exposure time. These suggest that Langmuir-type adsorption occurs at sites where O2 adsorbs randomly, leading to subdivision of the 2×1 and 1×2 domains by oxidized regions, and that Si atoms are ejected due to volume expansion in oxidation to change the ratio between 2×1 and 1×2 domains.  相似文献   

10.
Sukmin Jeong   《Surface science》2003,530(3):155-160
Using a first-principles method, we investigate the adsorption and diffusion of a Si adatom on the H-terminated Si(1 1 1) substrate, which would be useful in understanding the initial stages of Si homoepitaxy using a H surfactant. The adatom substitutes H atom(s) to form a monohydride structure or a dihydride structure. In forming the monohydride structure, the energy barrier for H substitution is absent. The adatom migrates on the surface with alternating its chemical state between monohydride and dihydride. These behaviors of the adatom are quite similar to those on the H/Si(0 0 1)2 × 1 surface, despite the significant difference in the substrate structure between both orientations. The resulting diffusion barrier is 1.30 eV, which is also comparable to that on the H/Si(0 0 1)2 × 1 surface.  相似文献   

11.
J. -Z. Que  M. W. Radny  P. V. Smith   《Surface science》2003,540(2-3):265-273
Several models have been proposed in the literature for the initial stages of the dissociative chemisorption of silane (SiH4) on the Si(1 1 1)7 × 7 surface. In this paper, geometry optimisation calculations using the extended Brenner empirical potential have been performed to determine which of these models yields the minimum energy structure. The lowest energy configurations are found to correspond to the dissociation of silane into SiH2 and two hydrogen atoms. The minimum energy structure involves the adsorption of the two hydrogen atoms onto the dangling bonds of an adjacent adatom and rest atom, and the insertion of the remaining SiH2 fragment into one of the adatom backbonds. These results are discussed in the light of the existing experimental data.  相似文献   

12.
The reactions of Si(100) and Si(111) surfaces at 700 °C (973 K) with ethylene (C2H4) at a pressure of 1.3×10−4 Pa for various periods of time were studied by using Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS). For a C2H4 exposure level, the amount of C on the (111) surface was larger than that on the (100) surface. The formation of β-SiC grain was deduced by comparing the CKLL spectra from the sample subjected to various C2H4 exposure levels, and from β-SiC crystal.  相似文献   

13.
K-band electron spin resonance (ESR) at 4.3 K has revealed the dipole-dipole (DD) interaction effects between [1 1 1]Pb centers (*Si ≡ Si3 defects with unpaired sp3 hybrid [1 1 1]) at the 2 dimensional (1 1 1)Si/SiO2 interface. This has been enabled by the perfectly reversible H2 passivation of Pb, which affects the defect's spin state. Sequential hydrogenation at 253–353°C and degassing treatments in high vacuum at 743–835°C allowed to vary the Pb density in the range 5 × 1010 < [Pb] (1.14 ± 0.06) × 1013 cm-2. With increasing [Pb] fine structure doublets are clearly resolved. It is found that (1 1 1)Si/SiO2 interfaces, dry thermally grown at ≈920°C, naturally comprise a *Si ≡ Si3 defect density — passivated or not — of 1.14 × 1013 cm-2.  相似文献   

14.
Diffusion length of Ga on the GaAs(0 0 1)-(2×4)β2 is investigated by a newly developed Monte Carlo-based computational method. The new computational method incorporates chemical potential of Ga in the vapor phase and Ga migration potential on the reconstructed surface obtained by ab initio calculations; therefore we can investigate the adsorption, diffusion and desorption kinetics of adsorbate atoms on the surface. The calculated results imply that Ga diffusion length before desorption decreases exponentially with temperature because Ga surface lifetime decreases exponentially. Furthermore, Ga diffusion length L along and [1 1 0] on the GaAs(0 0 1)-(2×4)β2 are estimated to be and L[110]200 nm, respectively, at the incorporation–desorption transition temperature (T860 K).  相似文献   

15.
X. -C. Guo  R. J. Madix   《Surface science》2004,550(1-3):81-92
The adsorption of oxygen and carbon dioxide on cesium-reconstructed Ag(1 1 0) surface has been studied with scanning tunneling microscopy (STM) and temperature programmed desorption (TPD). At 0.1 ML Cs coverage the whole surface exhibits a mixture of (1 × 2) and (1 × 3) reconstructed structures, indicating that Cs atoms exert a cooperative effect on the surface structures. Real-time STM observation shows that silver atoms on the Cs-covered surface are highly mobile on the nanometer scale at 300 K. The Cs-reconstructed Ag(1 1 0) surface alters the structure formed by dissociative adsorption of oxygen from p(2 × 1) or c(6 × 2) to a p(3 × 5) structure which incorporates 1/3 ML Ag atoms, resulting in the formation of nanometer-sized (10–20 nm) islands. The Cs-induced reconstruction facilitates the adsorption of CO2, which does not adsorb on unreconstructed, clean Ag(1 1 0). CO2 adsorption leads to the formation of locally ordered (2 × 1) structures and linear (2 × 2) structures distributed inhomogeneously on the surface. Adsorbed CO2 desorbs from the Cs-covered surface without accompanied O2 desorption, ruling out carbonate as an intermediate. As a possible alternative, an oxalate-type surface complex [OOC–COO] is suggested, supported by the occurrence of extensive isotope exchange between oxygen atoms among CO2(a). Direct interaction between CO2 and Cs may become significant at higher Cs coverage (>0.3 ML).  相似文献   

16.
The mechanical anisotropy, structural properties, electronic band structures and thermal properties of C2 N2 (CH2 ), Si2 N2 (SiH2 ) and Ge2 N2 (GeH2 ) are detailed and investigated in this work. The novel silicon nitride phase Si2 N2 (SiH2 ) and germanium nitride phase Ge2 N2 (GeH2 ) in the Cmc 21 structure are proposed in this work. The novel proposed Si2 N2 (SiH2 ) and Ge2 N2 (GeH2 ) are both mechanically and dynamically stable. The electronic band calculation of the HSE06 hybrid functional shows that C2 N2 (CH2 ), Si2 N2 (SiH2 ) and Ge2 N2 (GeH2 ) are all wide band gap semiconductor materials, and C2 N2 (CH2 ) and Si2 N2 (SiH2 ) are direct band gap semiconductor materials, while Ge2 N2 (GeH2 ) is a quasi-direct band gap semiconductor material, the band gap of C2 N2 (CH2 ), Si2 N2 (SiH2 ) and Ge2 N2 (GeH2 ) are 5.634 eV, 3.013 eV, and 2.377 eV, respectively. The three-dimensional and plane distributions of Young’s modulus, shear modulus and Poisson’s ratio of C2 N2 (CH2 ), Si2 N2 (SiH2 ) and Ge2 N2 (GeH2 ) show that these materials have different degrees of mechanical anisotropy. The order of Young’s modulus of Si2 N2 (SiH2 ) and Ge2 N2 (GeH2 ) in different directions is different from that of C2 N2 (CH2 ). When the tensile axis is in a particular direction, the order of the Young’s modulus of Si2 N2 (SiH2 ): E [110] <E [120] <E [111] <E [101] <E [010] =E [100] <E [011] <E [001], and the order of the Young’s modulus of Ge2 N2 (GeH2 ): E [110] <E [111] <E [101] <E [120] <E [100] <E [010] <E [011] <E [001] .  相似文献   

17.
The surface structure and properties of the HfB2(0 0 0 1) (Hafnium diboride, HfB2) surface have been investigated with X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Annealing temperatures above 1900°C produce a sharp (1×1) LEED pattern, which corresponds to STM images showing flat (0 0 0 1) terraces with a very low contamination level separated by steps 3.4 Å in height, corresponding to the separation of adjacent Hf planes in the HfB2 bulk structure. For lower annealing temperatures, extra p(2×2) spots were observed with LEED, which correspond to intermediate terraces of a p(2×1) missing row structure as observed with STM.  相似文献   

18.
Scanning tunneling microscopy experiments on a clean, reduced SnO2(1 0 0)-(1 × 1) surface reveal surface defects with zero-, one-, and two-dimensions. Point defects consist of missing SnO/SnO2 units. Line defects are probably crystallographic shear planes that extend to the surface and manifest themselves as rows of atoms, shifted half a unit cell along the [0 1 0] direction. Their ends act as preferential nucleation sites for the formation of Pd clusters upon vapor deposition. Areas of a more reduced surface phase, still with a (1 × 1) structure and a half-unit cell deep, form at [0 0 1]-oriented step edges.  相似文献   

19.
We studied reaction of oxygen atoms with D-terminated Si(1 1 1) surfaces from a desorption point of view. As the D (1 ML)/Si(1 1 1) surface was exposed to O atoms D2 and D2O molecules were found to desorb from the surface. The desorption kinetics of D2 and D2O molecules exhibited a feature characterized with a quick rate jump at the very beginning of O exposure, which was followed by a gradual increase with a delayed maximum and then by an exponential decrease. The O-induced D2 desorption spectra as a function of Ts appeared to be very similar to the H-induced D2 desorption spectrum from the D/Si(1 1 1) surfaces. Possible mechanisms for the O-induced desorption reactions were discussed.  相似文献   

20.
Atomic ordering of HCl-isopropanol (HCl-iPA) treated and vacuum annealed (1 0 0) InAs surfaces was studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and reflectance anisotropy spectroscopy (RAS). On the as-treated surface, a diffused (1 × 1) pattern is observed, which successively evolves to the β2(2 × 4)/c(2 × 8) and (4 × 2)/c(8 × 2) ones after annealing to 330 °C and 410 °C, respectively. At the intermediate temperature of 370 °C, an 2(2 × 4)/(4 × 2) mixed reconstruction is observed. Reflectance anisotropy spectra are compared with those of the corresponding reconstructions observed after As-decapping and found to be quite similar. Therefore we conclude that high-quality (1 0 0) InAs surfaces can be obtained by wet chemical treatment in an easy, inexpensive and practical way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号