首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 958 毫秒
1.
Ab initio SCF MO calculations (with the 4-31G basis set) have been carried out to determine the equilibrium geometry, vibrational frequencies, dipole-moment derivatives, and force constants for intermolecular modes of the formamide dimer and its d4 and d6 derivatives. The results are correlated with monomer calculations and experimental data for crystalline formamide.  相似文献   

2.
Variable temperature (−105 to −150 °C) studies of the infrared spectra (3500–400 cm−1) of 1,1-dimethylhydrazine, (CH3)2NNH2, in liquid krypton have been carried out. No convincing spectral evidence could be found for the trans conformer which is expected to be at least 600 cm−1 less stable than the gauche form. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from MP2/6-31G(d) ab initio calculations. The predicted infrared and Raman spectra are compared to the experimental ones. The adjusted r0 parameters from MP2/6-311+G(d,p) calculations are compared to those reported from an electron diffraction study. The energy differences between the gauche and trans conformers have been obtained from MP2 ab initio calculations as well as from density functional theory by the B3LYP method calculations from a variety of basis sets. All of these calculations indicate an energy difference of 650–900 cm−1 with the B3LYP calculations predicted the larger values. The potential function governing the conformational interchange has been predicting from both types of calculations and comparisons have been made. The barrier to internal rotation by the independent rotor model of the inner methyl group is predicted to have a value of 1812 cm−1 and that of the outer one of 1662 cm−1 from ab initio MP2/6-31G(d) calculations. These values agree well with the experimentally determined values of 1852±16 and 1558±12 cm−1, respectively, from a fit of the torsional transitions with the coupled rotor model. For the coupled rotor model the predicted V33 (sin 3τ0 sin 3τ1 term) value which ranged from 190 to 232 cm−1 is in reasonable agreement with the experimental value of 268±3 cm−1 but the predicted V33 (cos 3τ0 cos 3τ1 term) value of −73 to −139 cm−1 is 25% smaller and of the opposite sign of the experimental value of 333±22 cm−1. These theoretical and spectroscopy results are compared to similar quantities of some corresponding molecules.  相似文献   

3.
The structures and vibrations of p-diaminobenzene (PDAB) in the S0 and S1 states have been studied by ab initio quantum-chemical calculations. Results from geometry optimization show that the two stable cis and trans conformers of PDAB are non-planar in the S0 state. Upon electronic excitation to the S1 state, enhanced interaction between the ring and the amino substituent causes the molecule to become planar and contract along the long in-plane axis. A detailed analysis of the normal vibrations of PDAB in both states has been done on the basis of the motions of individual atoms as well as reduced masses, force constants and frequencies. The computed frequencies are in reasonably good agreement with the available experimental data.  相似文献   

4.
The structures, energetics, vibrational frequencies and IR intensities of the H3N HF, H3N F2 and NH2FHF (three isomers) complexes were examined using the self-consistent field method within the 6-311G** basis set. The interaction energies were calculated using the MP2 approach. The results are compared with monomer calculations and experimental data. The complex NH2FHF was found to exist in three forms: one with the HF molecule hydrogen bonded to the nitrogen lone pair of NH2F (D0 =7.403 kcal mol−1), another a complex formed through the F atom lone pair (D0=4.698 kcal mol−1) and third a cyclic structure (D0=5.644 kcal mol−1).  相似文献   

5.
The vibrational frequencies and corresponding normal mode assignments of disilylcarbodiimide are examined theoretically using the GAUSSIAN98 set of quantum chemistry codes. MP2 and DFT (B3LYP) calculations predict a non-linear structure with C2 symmetry. All normal modes were successfully assigned to one of eight types of motion (NCN asymmetric stretch, NCN symmetric stretch, Si–H stretch, Si–N stretch, H–Si–H bend, SiH3 wag, SiH3 twist, and Si–NN–Si torsion) utilizing the C2 symmetry of the molecule. Uniform scaling factors were derived for each type of motion. Predicted infrared and Raman intensities are reported. Calculated normal mode frequencies for disilylcarbodiimide-d6 are also reported.  相似文献   

6.
采用[CCSD(T)]-F12方法和aug-cc-pVTZ基组,同时引入中心键函数(3s3p2d1f1g)构建了Kr-C2H2体系的高精度四维势能面.在构建势能面时考虑了分子间的振动方式及C2H2单体内的ν1对称伸缩和ν3反对称伸缩振动.将计算得到的四维势能面在Q1方向和Q3方向分别做积分得到C2H2单体分别处于振动基态和(ν1,ν3)=(1,1)激发态的平均势能面.计算结果表明,这2个平均势能面均存在2个等价的T型全局极小值和2个等价线性极小值.全局极小值的几何构型位于R=0.41 nm,θ=65.6°/114.4°,势阱深度为151.88 cm-1.对径向部分采用离散变量表象法(DVR),角度部分采用有限基组表象法(FBR),并结合Lanczos循环算法计算了Kr-C2H2的振转能级和束缚态.计算结果表明,复合物在(ν1,ν3)=(1,1)区域的带心位移为-1.48 cm-1,表现为红移,与实验值-1.38 cm-1很接近;计算得到的红外跃迁频率也与实验值相吻合,说明得到的从头算势能面具有高精度.  相似文献   

7.
We present the results of Q.N.S. studies for two members of the homologous series of alkoxyazoxybenzenes, CnH2n+1O-ϕ-N2O-ϕ-OCnH2n+1; PAP (n = 2) and POAB (n = 3). The Q.N.S. measurements were performed on the non-deuteriated (d0-PAP and d0-POAB) and the chain deuteriated samples, d10-PAP and d14-POAB. Three models were fitted to the experimental data: (1) uniaxial rotational diffusion of the molecule around the axis with the smallest moment of inertia, (2) uniaxial rotational diffusion of the two moieties of the molecule around the N-ϕ bonds, (3) 180° instantaneous jumps of the two moieties of the molecule around N-ϕ bonds. We have assumed the molecule to exist in the trans conformation. The translational diffusion of the molecules and the methyl groups' reorientation were neglected. It turned out that model (3) does not describe the experimental data well. Models (1) and (2) describe the experimental data equally well, giving no preference for the axis of rotation. However, comparison of our results with those obtained from dielectric relaxation suggests the choice of model (2) as responsible for the Q.N.S. data. The correlation times determined by fitting to both rotational diffusion models are of the order of several picoseconds. However, the correlation times determined for d10-PAP and d14-POAB are two or three times longer than for d0-PAP and d0-POAB, respectively, which indicates the existence of additional motion of the end chains.  相似文献   

8.
The geometries and vibrational frequencies of the adducts ClCO2, ClCOS and ClCS2 were derived at the Hartree-Fock (HF) 3-21G (*) level. The Ca, structure of ClCO2 corresponds to one C-O bond and one C=O bond. Similarly, Ca, ClCS2 has one C-S and one C=S bond, and ClCOS has one C-S and one C-O bond. Single-point spin-projected fourth-order Møller-Plesset (MP4) 3-21G (*) calculations at these geometries were used in bond-separation reactions to derive ΔHo0 for adduct formation, which is calculated to be about 39 kJ mol−1 exothermic for ClCOS and ClCS2, but about 39 kJ mol−1 endothermic for ClCO2. The C2v structures for ClCO2 and ClCS2 were also characterized. The geometry of ClCS2 has not been determined experimentally; comparison with an available measured entropy for ClCS2 suggests that the C2v structure is the one formed by addition of Cl to CS2, although the energy relative to the Ca form is not reliably calculated because of instability in the HF wavefunction.  相似文献   

9.
The equilibrium geometry and the potential energy and dipole moment surfaces have been determined for the cis and trans isomers of the HONO molecule by an ab initio Moller–Plesset (MP2) calculation with a wide set of atomic orbitals. The multidimensional anharmonic vibrational Schrodinger equations are solved using the variational method with the Hamiltonian and wave functions written in the normal coordinates of cis and trans isomers. All one- and two-dimensional and a number of three-dimensional vibrational problems are solved to obtain the energy levels and vibrational eigenfunctions. The frequencies and intensities for the fundamental, overtone and some combination bands are determined in good agreement with the available experimental results. The calculation shows the strength of coupling between different vibrational modes and reveals the presence of strong resonances between the (v1, v3, v6) and (v1, v3−1, v6+2) states of cis-HONO. This fact may be important for understanding the energy redistribution between the intermolecular degrees of freedom. The magnitude and direction of vibrationally averaged ground-state dipole moment of both isomers, as well as the direction of transition dipole moments, are in good agreement with the experimental findings. The changes in the values of dipole moment and some geometrical parameters of cis- and trans-HONO on vibrational excitation are also computed.  相似文献   

10.
电化学阻抗谱可用于诊断多孔电极内电荷转移反应,即界面电荷集聚和电荷传导,以及反应物质输运。本文采用复相量方法,在同态假设条件下,重新推演多孔电极阻抗谱模型,厘清传统多孔电极阻抗谱模型中的模糊性表述。(1) 定义多孔电极表征输入参数,包括电极基体电子电导率σ1 、电解质离子电导率σ2、界面电荷传递电导率gct、单位面积界面电容C、固相扩散系数D、速度常数k、电极厚度d、特征孔深Lp 和单位体积表面积Sc;(2) 解析阻抗谱特征输出参数,包括场扩散常数K,特征频率ω0ω1ω2ω3ωmax,它们分别相关于界面传导反应、有限场扩散、氧化还原反应、孔内扩散和最小特征孔尺寸,以及分别对应于从传导到扩散和从扩散到饱和的转折频率fk1fk2;(3) 当参数XZ同时变化时(X = σ1Z = d,Sc,Lp,C,gct,D,k),通过阻抗谱特征参数的演变规律,分析了电荷转移反应中XΖ参数耦合竞争;(4)为深入分析电荷转移反应中参数XZ的耦合竞争,引入了分叉频率fXZfZXfXZfZX所处位置可以用于表征参数XZ影响电荷转移反应的深度和广度。当分叉频率fXZfZX不存在时,表明电荷转移反应中参数XZ在全频率范围内存在耦合竞争。总之,借助于特征频率和分叉频率,本文一方面研究了动力学参数和微观结构参数对多孔电极中电荷转移反应的影响,另一方面分析谱图的变化及其背后的阻抗谱特征演化规律。本文研究结果可为阻抗谱的系统仿真和辨识提供理论基础,可为多孔电极内电荷转移反应的竞争分析提供技术支撑,还可为电化学储能系统的优化设计提供诊断工具。  相似文献   

11.
Ab initio molecular orbital theory was used to determine the equilibrium structure and vibrational frequencies of Fe2Cl6 and FeAlCl6. The equilibrium structure the Fe2Cl6 dimer has D2h symmetry with a planar arrangement of the four membered {FeClbrFeClbr} ring, similar to the Al2Cl6 dimer. The calculated bond distances and vibrational frequencies are in good agreement with experiment. The potential energy surface for the puckering of the {FeClbrFeClbr} ring is extremely flat. This prevents an unambiguous assignment of either D2h or C2v symmetry to the Fe2Cl6 structure in electron diffraction measurements. The FeAlCl6 molecule is found to have a C2v structure similar to Fe2Cl6 with vibrational frequencies in good agreement with experiment.  相似文献   

12.
The microwave spectrum of isopropyl fluoroformate is characterized by intense a-type R-branch transitions from one conformational species. The rotational constants of the ground state, A0 = 4967.0(8) MHz, B0 = 1704.69(2) MHz, C0 = 1468.86(1) MHz and κ = −0.8651(2) are consistent with a τ1 (O=COC) = 0°, τ2(COCH) ˜35° structure. This structure can be viewed as a combination of the two conformational species found in ethyl fluoroformate. Two vibrational satellites having rotational constants A0 = 4963(5) MHz, B0 = 1694.11(7) MHz. C0 = 1471.43(4) MHz and A0=4998(6) MHz, B0 = 1705.21(7) MHz, C0 = 1471.10(4) MHz have been assigned.  相似文献   

13.
The infrared spectra (3500 to 40 cm−1) of gaseous and solid and the Raman spectra (3500 to 30 cm−1) of liquid and solid 1-fluorosilacyclobutane, c-C3H6SiFH, have been obtained. Both the axial and equatorial conformers with respect to the fluorine atom have been identified in the fluid phases. Variable temperature (−105 to −150 °C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 282 ± 27 cm−1 (3.37 ± 0.32 kJ/mol), with the equatorial conformer the more stable form and the only conformer remaining in the annealed solid. At ambient temperature there is approximately 21 ± 2% of the axial conformer present in the vapor phase. From isolated Si–H stretching frequencies the Si–H (r0) distances are calculated to be 1.484 and 1.485 Å for the equatorial and axial conformers, respectively. Structural parameters have been predicted from MP2/6-311 + G(d,p) ab initio calculations and the adjusted r0 parameters for both conformers were obtained from a combination of the ab initio predicted values and the six previously reported microwave rotational constants. Along with the Si–H bond distance, the Si–C, and C–C distances of 1.865(5), and 1.571(5) Å, respectively, for the equatorial conformer are significantly different from the values for these parameters previously reported from an election diffraction study. Both the SiC and CC distances and the SiF distance are longer by 0.002 and 0.004 Å, respectively, for the axial conformer. Structural parameters have also been obtained for silacyclobutane, c-C3H6SiH2 and ethylsilylfluoride, CH3CH2SiH2F, from combined ab initio predicted values and previously reported rotational constants. Several of these newly determined parameters are significantly different from those previously reported for both molecules. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the level of Moller–Plesset (MP) to second order. A complete vibrational assignment supported by normal coordinate calculations is proposed for the equatorial conformer, and several of the fundamentals of the axial conformer have also been identified. The results are discussed and compared to corresponding quantities for some similar molecules.  相似文献   

14.
A vibrational analysis is performed for [Cu(NH3)4]2+, which has a square-planar frame work structure. Two versions of symmetry coordinates are produced assuming the C4V and C4h structures, respectively. The IR spectrum of [Cu(15NH3)4]2+ was recorded, and the observed frequencies used as supplementary data in a normal coordinate analysis along with data available for other isotopic compounds. An approximate force field which reproduces satisfactorily the observed frequencies for all the isotopic compounds is developed. The force constants may be classified as pertaining to the (a) ligand vibrations, (b) ligand-framework couplings and (c) framework vibrations. These calculations for the whole complex are compared with (i) results for free NH3, (ii) the analysis of the XY4 (D4h) point-mass model and (iii) calculations for the pyramidal-axial CuNH3 (C3V) fragment. It is concluded that the effects of kinematic coupling are small. The validity of the point-mass model approximation is confirmed.  相似文献   

15.
The compounds M[(N-t-Bu)2SiMe2]2 (I M = Ti; II, M = Zr) were prepared by treatment of dilithiated Me2Si(NH-t-Bu)2 with TiCl4 and ZrCl4, respectively. Crystals of I and II belong to the space groups P212121 and C2/c, respectively. The spirocyclic molecules possess approximate D2d symmetry with planar MN2Si rings. Important ring dimensions are d(MN) 1.890(4)/2.053(2) » (I/II). d(SiN) 1.742(10)/1.753(2) », angle NMN 83.4(2)/77.9(1)° and angle NSiN 92.4(2)/94.8(1)°.  相似文献   

16.
The details of weak C–Hπ interactions that control several inter and intramolecular structures have been studied experimentally and theoretically for the 1:1 C2H2–CHCl3 adduct. The adduct was generated by depositing acetylene and chloroform in an argon matrix and a 1:1 complex of these species was identified using infrared spectroscopy. Formation of the adduct was evidenced by shifts in the vibrational frequencies compared to C2H2 and CHCl3 species. The molecular structure, vibrational frequencies and stabilization energies of the complex were predicted at the MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels. Both the computational and experimental data indicate that the C2H2–CHCl3 complex has a weak hydrogen bond involving a C–Hπ interaction, where the C2H2 acts as a proton acceptor and the CHCl3 as the proton donor. In addition, there also appears to be a secondary interaction between one of the chlorine atoms of CHCl3 and a hydrogen in C2H2. The combination of the C–Hπ interaction and the secondary ClH interaction determines the structure and the energetics of the C2H2–CHCl3 complex. In addition to the vibrational assignments for the C2H2–CHCl3 complex we have also observed and assigned features owing to the proton accepting C2H2 submolecule in the acetylene dimer.  相似文献   

17.
In this resonantly enhanced multiphoton ionization (REMPI) experiment, an extended vibrational progression in the CI stretching mode (v3) of methyl iodide (-h3 and -d3) is observed in the 1 + 1′ excitation of the [1/2] 6s; 0 Rydberg state when the pump photon wavelength lies in the bound → free absorption continuum. This is in contrast with one-colour coherent (non-resonant) two-photon excitation, where the v3 mode is not excited. By working at several different fixed probe wavelengths and scanning the pump frequency, the relative contributions from the three intermediate repulsive states can be explored through changes in the relative strengths of the Ω = 0 and 1 components of the final Rydberg states. Extensive predissociation in the Rydberg states curtails the vibrational progression.  相似文献   

18.
The symmetry unrestricted C36F2 isomers formed from fullerene C36, the initial symmetry of which is C6v, C6h, or D2d, have been extensively studied with semi-empirical (AM1 and PM3) calculations. Based on the relationship between the isomer's stability and the adding positions, three patterns of the adding sites of F2 moiety in the additive reactions have been deducted. The results of the π-orbital axis vector (POAV) analysis indicate that the chemical reactivity of C36 is the result of the high strain in the C36 cage. But, in order to form stable compounds, the effects, which guide the F2 moiety to select carbon atoms in the C36 cage, are dominated by the conjugate effect in C36F2 system rather than the strain release in the C36 cage.  相似文献   

19.
The infrared spectra of cis-3-hexene and trans-3-hexene dissolved in liquid argon have been obtained at temperatures from 93 to 120 K. The absorptions were observed with a low-temperature cell and a Fourier transform infrared spectrophotometer. Ab initio molecular orbital calculations were performed to obtain the equilibrium geometry, vibrational frequencies, force fields, and infrared intensities. The calculations were done at the Hartree-Fock level using 6-31G basis set. The Cartesian force fields from ab initio calculations have been converted to the force field in symmetry coordinates. The scale factors of ab initio calculated force fields were determined. Normal coordinate calculations were performed using a scaled quantum mechanical (SQM) force field. Vibrational normal modes calculated for the lowest energy rotamers of cis- and trans-3-hexene have been assigned to infrared absorption bands observed in liquid argon solution. The assignments were based on calculated frequencies and potential energy distributions. The equilibrium geometries of the two lowest energy rotamers (symmetry C2 and Cs) of cis-3-hexene and of the three lowest energy rotamers (symmetry Ci, C2, and C1) of trans-3-hexene were calculated. Variable temperature studies of the infrared spectrum of cis- and trans-3-hexenes dissolved in liquid argon were done to obtain the ΔH of conversion between the rotamers C2 and Cs of cis-3-hexene and between the rotamers Ci, C2, and C1 of trans-3-hexene.  相似文献   

20.
基于理论计算,我们报道了Td对称性的[Pd4(μ3-SbH3)4(SbH3)4]团簇及一系列类似物的结构与成键。成键分析表明:每个Pd原子都是sp3杂化,其10个价电子与四个配体提供的8个价电子,满足18电子规则。并且,每个Pd原子与四个桥连的SbH3配体可以形成四个离域的四中心两电子超级σ键或八中心两电子键。一方面,根据超原子网络模型,这个钯团簇可以描述成四个2电子的超原子网络。另一方面,凝胶模型表明,它可以合理化的作为电子组态是1S21P6的8电子超原子。与此同时,d10d10闭壳层相互作用在稳定Pd4四面体结构中起到了关键性的作用。密度泛函理论计算表明:Td对称性[Pd4(μ3-SbH3)4(SbH3)4]团簇表现出高度稳定性,具有充满的电子壳层,大的HOMO-LUMO带隙(2.84 eV)以及负的核独立化学位移(NICS)值。此外,基于[Pd4(μ3-SbH3)4(SbH3)4]结构与成键模式,我们设计了一系列稳定的类似物,其有可能被实验合成出来。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号