首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hepatitis C virus (HCV) NS3/4A protease is an attractive target for the development of antiviral therapy. However, the evolution of antiviral drug resistance is a major problem for treatment of HCV infected patients. Understanding of drug-resistance mechanisms at molecular level is therefore very important for the guidance of further design of antiviral drugs with high efficiency and specificity. Paritaprevir is a potent inhibitor against HCV NS3/4A protease genotype 1a. Unfortunately, this compound is highly susceptible to the substitution at D168 in the protease. In this work, molecular dynamics simulations of paritaprevir complexed with wild-type (WT) and two mutated strains (D168 N and D168Y) were carried out. Due to such mutations, the inhibitor-protein hydrogen bonding between them was weakened and the salt-bridge network among residues R123, R155 and D168 responsible for inhibitor binding was disrupted. Moreover, the per-residue free energy decomposition suggested that the main contributions from key residues such as Q80, V132, K136, G137 and R155 were lost in the D168 N/Y mutations. These lead to a lower binding affinity of paritaprevir for D168 N/Y variants of the HCV NS3/4A protease, consistent with the experimental data. This detailed information could be useful for further design of high potency anti-HCV NS3/4A inhibitors.  相似文献   

2.
《印度化学会志》2023,100(3):100955
The hepatitis C virus is a viral disease that causes cirrhosis and hepatocellular carcinoma in the liver. Since the virus's discovery, significant therapeutic advances have been made. Notwithstanding, its upsurge necessitates the development of novel approaches to combating this disease. Recent studies have seen a rise in the value of plant compounds in the establishment of novel, efficient, and cost-efficient anti-HCV medications. These factors have motivated us to continuously search for novel, potent anti-HCV inhibitors, ideally with mechanisms different from those used in conventional medicine. Several filtrations processes including ADMET, molecular docking, and molecular dynamics (MD) simulation were used to choose potent hits from plant molecules deposited in the PubChem database. The binding kinetics were explored using MD simulation studies performed for 100 ns using GROMACS-2018.1. which was done to validate and supplement the findings of the virtual screening. The selected hits (with PubChem CID of 3,560,948 and 4,754,183) had preferable molecular traits that suggested they might work well as HCV inhibitors and are term as effective potential hits. The MD study confirmed the stability of the identified hit with a binding energy of ?111.724 ( ± 81.668) kj/mol and mechanisms different from the FDA-approved drug (sofosbuvir) used as a reference with a binding energy of ?106.132 ( ± 78.008) kj/mol. This approach could aid in the establishment and identification of novel inhibitors in pharmaceutical discovery. Experimental assessments could indeed ascertain as to if the identified molecule can be employed as an anti-HCV drug to address the ailment and confirm the reliability of our in-silico studies.  相似文献   

3.
Abstract

Hepatitis C virus (HCV) infection is a global threat to human health with an estimated 1.75 million new cases in 2015. Our previous studies showed that the ethyl acetate extraction of Daphne papyracea exhibited an inhibitory effect towards the HCV NS3/4A protease and eight compounds were identified from the extract. In this study, we investigated which of the eight compounds was responsible for the inhibitory effect of the extract against the HCV NS3/4A protease. From both molecular docking and enzyme inhibition studies, (+)-usnic acid was shown to be the most active compound and could be used as a lead compound in developing novel anti-HCV agents.  相似文献   

4.
Influenza A virus M2 (A/M2) forms a homotetrameric proton selective channel in the viral membrane. It has been the drug target of antiviral drugs such as amantadine and rimantadine. However, most of the current virulent influenza A viruses carry drug-resistant mutations alongside the drug binding site, such as S31N, V27A, and L26F, etc., each of which might be dominant in a given flu season. Among these mutations, the V27A mutation was prevalent among transmissible viruses under drug selection pressure. Until now, V27A has not been successfully targeted by small molecule inhibitors, despite years of extensive medicinal chemistry research efforts and high throughput screening. Guided by molecular dynamics (MD) simulation of drug binding and the influence of drug binding on the dynamics of A/M2 from earlier experimental studies, we designed a series of potent spirane amine inhibitors targeting not only WT, but also both A/M2-27A and L26F mutants with IC(50)s similar to that seen for amantadine's inhibition of the WT channel. The potencies of these inhibitors were further demonstrated in experimental binding and plaque reduction assays. These results demonstrate the power of MD simulations to probe the mechanism of drug binding as well as the ability to guide design of inhibitors of targets that had previously appeared to be undruggable.  相似文献   

5.
A new Zika virus (ZIKV) outbreak started in 2015. According to the World Health Organization, 84 countries confirmed ZIKV infection. RNA-dependent RNA polymerase (RdRp) was an appealing target for drug designers during the last two decades. Through molecular docking, we screened 16 nucleotide/side inhibitors against ZIKV RdRp. While the mode of interaction with ZIKV is different from that in the hepatitis C virus (HCV), nucleotide/side inhibitors in this study (mostly anti-HCV) showed promising binding affinities (?6.2 to ?9.7 kcal/mol calculated by AutoDock Vina) to ZIKV RdRp. Setrobuvir, YAK and, to a lesser extent, IDX-184 reveal promising results compared to other inhibitors in terms of binding ZIKV RdRp. These candidates would be powerful anti-ZIKV drugs.  相似文献   

6.
An affinity‐selection study using size exclusion chromatography (SEC) combined with off‐line electrospray ionization mass spectrometry (ESI‐MS) was performed on libraries of peptidic α‐ketoamide inhibitors directed against the hepatitis C virus (HCV) NS3 protease. A limiting amount of HCV NS3 protease (25 µM ) was incubated with equimolar amounts (100 µM ) of 49 reversible mechanism‐based ketoamide inhibitors, previously grouped into seven sets to ensure clearly distinguishable mass differences of the enzyme‐inhibitor complexes (>10 Da). The unbound compounds were separated rapidly from the protease and the protease‐inhibitor complexes by SEC spin columns. The eluate of the SEC was immediately analyzed by direct‐infusion ESI‐MS. An enzyme‐inhibitor complex, with a molecular mass corresponding to the NS3 protease binding to the preferred inhibitor, SCH212986, was the only molecular species detected. By increasing the molar ratio of HCV NS3 protease to inhibitors to 1:2 while keeping the inhibitors' concentration constant, the complex of the second most tightly bound inhibitor, SCH215426, was also identified. Although the potencies of these inhibitors were virtually un‐measurable by kinetic assays, a rank order of CVS4441 > SCH212986 > SCH215426 was deduced for their inhibition potencies by direct competition experiment with CVS4441 ( M ). As discussed in the article, through judicious application of this strategy, even large libraries of fairly weak, reversible and slow‐binding inhibitors could be rapidly screened and rank ordered to provide critical initial structure‐activity insights. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Transthyretin (TTR) is a homotetrameric plasma protein associated with human amyloid diseases. Although Tafamidis has been recently approved for the treatment of TTR familial amyloid polyneuropathy (FAP), there is still a need for more effective drugs in the treatment of TTR amyloidosis diseases. In this study, a computer‐aided approach combining molecular docking, virtual screening and molecular dynamics (MD) simulations was employed to identify potent TTR amyloidosis inhibitors from National Cancer Institute (NCI), Maybridge and Asdi databases. A receptor‐specific scoring function was also developed using comparative binding energy (COMBINE) method to accurately predict the inhibitory activities for the selected compounds during virtual screening. The developed receptor‐specific scoring function demonstrated good predictive ability by yielding strong correlation coefficients between experimental activities and estimated activities for 32 training set and 9 test set compounds, respectively. Moreover, it was successfully applied to rank the candidate compounds from structure‐based virtual screening. Finally, three compounds (NSC220163, MFCD00276817 and SPB06319) were identified as potential leads, which exhibited higher predicted inhibitory activities and higher binding affinities in comparison to the Tafamidis. Our results further suggest that halogen bonding interaction plays a crucial role in stabilizing the TTR‐inhibitor complex. These results indicate that our computational approach could effectively discover more potent TTR amyloidosis inhibitors, which can be further validate by in vitro and in vivo biological tests.  相似文献   

8.
Microsomal prostaglandin E synthase-1 (mPGES-1) is a newly recognized therapeutic target for the treatment of inflammation, pain, cancer, atherosclerosis, and stroke. Many mPGES-1 inhibitors have been discovered. However, as the structure of the binding site is not well-characterized, none of these inhibitors was designed based on the mPGES-1 structure, and their inhibition mechanism remains to be fully disclosed. Recently, we built a new structural model of mPGES-1 which was well supported by experimental data. Based on this model, molecular docking and competition experiments were used to investigate the binding modes of four representive mPGES-1 inhibitors. As the inhibitor binding sites predicted by docking overlapped with both the substrate and the cofactor binding sites, mPGES-1 inhibitors might act as dual-site inhibitors. This inhibitory mechanism was further verified by inhibitor-cofactor and inhibitor-substrate competition experiments. To investigate the potency-binding site relationships of mPGES-1 inhibitors, we also carried out molecular docking studies for another series of compounds. The docking results correlated well with the different inhibitory effects observed experimentally. Our data revealed that mPGES-1 inhibitors could bind to the substrate and the cofactor binding sites simultaneously, and this dual-site binding mode improved their potency. Future rational design and optimization of mPGES-1 inhibitors can be carried out based on this binding mechanism.  相似文献   

9.
The urgent need for novel HCV antiviral agents has provided an impetus for understanding the structural requisites of NS5B polymerase inhibitors at the molecular level. Toward this objective, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of 67 HCV NS5B polymerase inhibitors were performed using two methods. First, ligand-based 3D QSAR studies were performed based on the lowest energy conformations employing the atom fit alignment method. Second, receptor-based 3D QSAR models were derived from the predicted binding conformations obtained by docking all NS5B inhibitors at the allosteric binding site of NS5B (PDB ID: 2dxs). Results generated from the ligand-based model were found superior (r2cv values of 0.630 for CoMFA and 0.668 for CoMSIA) to those obtained by the receptor-based model (r2cv values of 0.536 and 0.561 for CoMFA and CoMSIA, respectively). The predictive ability of the models was validated using a structurally diversified test set of 22 compounds that had not been included in a preliminary training set of 45 compounds. The predictive r2 values for the ligand-based CoMFA and CoMSIA models were 0.734 and 0.800, respectively, while the corresponding predictive r2 values for the receptor-based CoMFA and CoMSIA models were 0.538 and 0.639, respectively. The greater potency of the tryptophan derivatives over that of the tyrosine derivatives was interpreted based on CoMFA steric and electrostatic contour maps. The CoMSIA results revealed that for a NS5B inhibitor to have appreciable inhibitory activity it requires hydrogen bond donor and acceptor groups at the 5-position of the indole ring and an R substituent at the chiral carbon, respectively. Interpretation of the CoMFA and CoMSIA contour maps in context of the topology of the allosteric binding site of NS5B provided insight into NS5B-inhibitor interactions. Taken together, the present 3D QSAR models were found to accurately predict the HCV NS5B polymerase inhibitory activity of structurally diverse test set compounds and to yield reliable clues for further optimization of the benzimidazole derivatives in the data set.  相似文献   

10.
In the life cycle of hepatitis C virus (HCV), NS3/NS4A protease has been proved to play a vital role in the replication of the HCV virus. Narlaprevir and its derivatives, the inhibitors of NS3/NS4A, would be potentially developed as important anti-HCV drugs in the future. In this study, quantitative structure-activity relationship (QSAR) analyses for 190 narlaprevir derivatives were conducted using comparative molecular field analysis (CoMFA), comparative molecular indices analysis (CoMSIA) and hologram quantitative structure-activity relationship (HQSAR) techniques. Both of the best CoMFA and HQSAR models showed statistical significance for the training set and good predictive accuracy for the test set, which strongly manifested the robustness of the CoMFA and HQSAR models. The CoMFA contour maps and the HQSAR contribution maps were both presented. Furthermore, based on the essential factors for ligand binding derived from the QSAR models, sixteen new derivatives were designed and some of them showed higher inhibitory activities confirmed by our models and molecular docking studies. General speaking, this study provides useful suggestions for the design of potential anti-HCV drugs.  相似文献   

11.
Post-translation modification of microtubules is associated with many diseases like cancer. Alpha Tubulin Acetyltransferase 1 (ATAT1) is a major enzyme that acetylates ‘Lys-40’ in alpha-tubulin on the luminal side of microtubules and is a drug target that lacks inhibitors. Here, we developed pharmacophore anchor models of ATAT1 which were constructed statistically using thousands of docked compounds, for drug design and investigating binding mechanisms. Our models infer the compound moiety preferences with the physico-chemical properties for the ATAT1 binding site. The results from the pharmacophore anchor models show the three main sub-pockets, including S1 acetyl site, S2 adenine site, and S3 diphosphate site with anchors, where conserved moieties interact with respective sub-pocket residues in each site and help in guiding inhibitor discovery. We validated these key anchors by analyzing 162 homologous protein sequences (>99 species) and over 10 structures with various bound ligands and mutations. Our results were consistent with previous works also providing new interesting insights. Our models applied in virtual screening predicted several ATAT1 potential inhibitors. We believe that our model is useful for future inhibitor discovery and for guiding lead optimization.  相似文献   

12.
New chemical classes of compounds must be introduced into the malaria drug development pipeline in an effort to develop new chemotherapy options for the fight against malaria. In this review we describe an iterative approach designed to identify potent inhibitors of a kinase family that collectively functions as key regulators of the cell cycle. Cyclin-dependent protein kinases (CDKs) are attractive drug targets in numerous diseases and, most recently, they have become the focus of rational drug design programs for the development of new antimalarial agents. Our approach uses experimental and virtual screening methodologies to identify and refine chemical inhibitors and increase the success rate of discovering potent and selective inhibitors. The active pockets of the plasmodial CDKs are unique in terms of size, shape and amino acid composition compared with those of the mammalian orthologues. These differences exemplified through the use of screening assays, molecular modeling, and crystallography can be exploited for inhibitor design. To date, several classes of compounds including quinolines and oxindoles have been identified as selective inhibitors of the plasmodial CDK7 homologue, Pfmrk. From these initial studies and through the iterative rational drug design process, more potent, selective, and most importantly, chemically unique compound classes have been identified as effective inhibitors of the plasmodial CDKs and the malarial parasite.  相似文献   

13.
Intracellular ADP-ribosyltransferases catalyze mono- and poly-ADP-ribosylation and affect a broad range of biological processes. The mono-ADP-ribosyltransferase PARP10 is involved in signaling and DNA repair. Previous studies identified OUL35 as a selective, cell permeable inhibitor of PARP10. We have further explored the chemical space of OUL35 by synthesizing and investigating structurally related analogs. Key synthetic steps were metal-catalyzed cross-couplings and functional group modifications. We identified 4-(4-cyanophenoxy)benzamide and 3-(4-carbamoylphenoxy)benzamide as PARP10 inhibitors with distinct selectivities. Both compounds were cell permeable and interfered with PARP10 toxicity. Moreover, both revealed some inhibition of PARP2 but not PARP1, unlike clinically used PARP inhibitors, which typically inhibit both enzymes. Using crystallography and molecular modeling the binding of the compounds to different ADP-ribosyltransferases was explored regarding selectivity. Together, these studies define additional compounds that interfere with PARP10 function and thus expand our repertoire of inhibitors to further optimize selectivity and potency.  相似文献   

14.
The viral resistance of marketed antiviral drugs including the emergence of new viral resistance of the only marketed CCR5 entry inhibitor, maraviroc, makes it necessary to develop new CCR5 allosteric inhibitors. A mutagenesis/modeling approach was used (a) to remove the potential hERG liability in an otherwise very promising series of compounds and (b) to design a new class of compounds with an unique mutant fingerprint profile depending on residues in the N-terminus and the extracellular loop 2. On the basis of residues, which were identified by mutagenesis as key interaction sites, binding modes of compounds were derived and utilized for compound design in a prospective manner. The compounds were then synthesized, and in vitro evaluation not only showed that they had good antiviral potency but also fulfilled the requirement of low hERG inhibition, a criterion necessary because a potential approved drug would be administered chronically. This work utilized an interdisciplinary approach including medicinal chemistry, molecular biology, and computational chemistry merging the structural requirements for potency with the requirements of an acceptable in vitro profile for allosteric CCR5 inhibitors. The obtained mutant fingerprint profiles of CCR5 inhibitors were used to translate the CCR5 allosteric binding site into a general pharmacophore, which can be used for discovering new inhibitors.  相似文献   

15.
An iterative, computer-assisted, drug design strategy that combines molecular design, molecular mechanics, molecular dynamics (MD), and free energy perturbation (FEP) calculations with compound synthesis, biochemical testing of inhibitors, and crystallographic structure determination of protein-inhibitor complexes was successfully used to predict the rank order of a series of nucleoside monophosphate analogues as fructose 1,6-bisphosphatase (FBPase) inhibitors. The X-ray structure of FBPase complexed with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) provided structural information used for subsequent analogue design and free energy calculations. The FEP protocol was validated by calculating the free energy differences for the mutation of ZMP (1) to AMP (2). The calculated results showed a net gain of 1.7 kcal/mol, which agreed with the experimental result of 1.3 kcal/mol. FEP calculations were performed for 18 other AMP analogues. Inhibition constants were determined for over half of these analogues, usually after completion of the calculation, and were consistent with the predictions. Solvation free energy differences between AMP and various AMP analogues proved to be an important factor in binding free energies, suggesting that increased desolvation costs associated with the addition of polar groups to an inhibitor must be overcome by stronger ligand-protein interactions if the structural modification is to enhance inhibitor potency. The results indicate that FEP calculations predict relative binding affinities with high accuracy and provide valuable insight into the factors that influence inhibitor binding and therefore should greatly aid efforts to optimize initial lead compounds and reduce the time required for the discovery of new drug candidates.  相似文献   

16.
Five nonpeptide, small-molecule inhibitors of the human MDM2-p53 interaction are presented, and each inhibitor represents a new scaffold. The most potent compound exhibited a Ki of 110 +/- 30 nM. These compounds were identified using our multiple protein structure (MPS) method which incorporates protein flexibility into a receptor-based pharmacophore model that identifies appropriate hotspots of binding. Docking the inhibitors with an induced-fit docking protocol suggested that the inhibitors mimicked the three critical binding residues of p53 (Phe19, Trp23, and Leu26). Docking also predicted a new orientation of the scaffolds that more fully fills the binding cleft, enabling the inhibitors to take advantage of additional hydrogen-bonding possibilities not explored by other small molecule inhibitors. One inhibitor in particular was proposed to probe the hydrophobic core of the protein by taking advantage of the flexibility of the binding cleft floor. These results show that the MPS technique is a promising advance for structure-based drug discovery and that the method can truly explore broad chemical space efficiently in the quest to discover potent, small-molecule inhibitors of protein-protein interactions. Our MPS technique is one of very few ensemble-based techniques to be proven through experimental verification of the discovery of new inhibitors.  相似文献   

17.
We report here the synthesis and evaluation for telomerase-inhibitory and quadruplex DNA binding properties of several rationally-designed quindoline analogues, substituted at the 2- and 7- positions. The ability of these compounds to interact with and stabilise an intramolecular G-quadruplex DNA against increases in temperature was evaluated by a fluorescence-based (FRET) melting assay. The resulting T(m) values were found to correlate with their potency for telomerase inhibition, as measured in an in vitro telomerase TRAP assay. The interactions of a number of compounds with a quadruplex DNA molecular structure were simulated by molecular modelling methods. It is concluded that this class of compound represents a new chemical type suitable for further development as telomerase inhibitors.  相似文献   

18.
p38 MAP kinase is a promising target for anti-inflammatory treatment. The classical kinase inhibitors imatinib and sorafenib as well as BI-1 and BIRB-796 were reported to bind in the DFG-out form of human p38α, known as type II or allosteric kinase inhibitors. Although DFG-out conformation has attracted great interest in the design of type II kinase inhibitors, the structural requirements for binding and mechanism of stabilization of DFG-out conformation remain unclear. As allosteric inhibition is important to the selectivity of kinase inhibitor, herein the binding modes of imatinib, sorafenib, BI-1 and BIRB-796 to p38α were investigated by molecular dynamics simulation. Binding free energies were calculated by molecular mechanics/Poisson-Boltzmann surface area method. The predicted binding affinities can give a good explanation of the activity difference of the studied inhibitors. Furthermore, binding free energies decomposition analysis and further structural analysis indicate that the dominating effect of van der Waals interaction drives the binding process, and key residues, such as Lys53, Gly71, Leu75, Ile84, Thr106, Met109, Leu167, Asp168, and Phe169, play important roles by forming hydrogen bond, salt bridge, and hydrophobic interactions with the DFG-out conformation of p38α. Finally, we also conducted a detailed analysis of BI-1, imatinib, and sorafenib binding to p38α in comparison with BIRB-796 exploited for gaining potency as well as selectivity of p38 inhibitors. These results are expected to be useful for future rational design of novel type II p38 inhibitors.  相似文献   

19.
Cyclophilins (Cyp) are a family of cellular enzymes possessing peptidyl-prolyl isomerase activity, which catalyze the cis-trans interconversion of proline-containing peptide bonds. The two most abundant family members, CypA and CypB, have been identified as valid drug targets for a wide range of diseases, including HCV, HIV, and multiple cancers. However, the development of small molecule inhibitors that possess nM potency and high specificity for a particular Cyp is difficult given the complete conservation of all active site residues between the enzymes. Monte Carlo statistical sampling coupled to free energy perturbation theory (MC/FEP) calculations have been carried out to elucidate the origin of the experimentally observed nM inhibition of CypA by acylurea-based derivatives and the >200-fold in vitro selectivity between CypA and CypB from aryl 1-indanylketone-based μM inhibitors. The computed free-energies of binding were in close accord with those derived from experiments. Binding affinity values for the inhibitors were determined to be dependent upon the stabilization strength of the nonbonded interactions provided toward two catalytic residues: Arg55 and Asn102 in CypA and the analogous Arg63 and Asn110 residues in CypB. Fine-tuning of the hydrophobic interactions allowed for enhanced potency among derivatives. The aryl 1-indanylketones are predicted to differentiate between the cyclophilins by using distinct binding motifs that exploit subtle differences in the active site arrangements. Ideas for the development of new selective compounds with the potential for advancement to low-nanomolar inhibition are presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号