首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
结合金属/复合材料层合结构的抗侵彻能力,基于混合蜂窝结构低成本、高韧性以及在低速冲击下吸能的特点,设计了一种Al/CFRP(carbon fiber reinforced plastics)/混合蜂窝铝复合夹芯多层结构,旨在利用各层结构特点,逐步降低弹体速度,高效吸收弹体动能,以达到防护效果。为探究Al/CFRP/混合蜂窝铝复合夹芯多层结构在弹体侵彻下的损伤演化规律及吸能特性,开展了Al/CFRP/混合蜂窝铝复合夹芯多层结构在弹体侵彻下的数值分析,探讨了冲击能量对多层结构抗侵彻性能的影响。结果表明:与Al/CFRP复合结构相比,引入混合蜂窝铝后,结构给予弹体的反作用力增大,在能量不变的情况下,弹体作用板的时间变短。在Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻过程中,Al板和CFRP芯层主要抵抗侵彻以降低弹体速度,混合蜂窝铝主要是吸能。在40 J的冲击能量下,结构总吸能为36.79 J,比吸能为0.217 J/g,蜂窝铝芯层吸能占主要部分,吸能比率为30.3%;随着冲击能量的增大,蜂窝铝芯层的吸能比率增至56.2%,即冲击能量较大时蜂窝铝芯层的吸能效果更好。  相似文献   

2.
 为实现聚能装药对多层介质的大破孔侵彻,提出了钛合金药型罩聚能装药设计方案。采用实验与数值模拟相结合的方法,对钛合金、低碳钢及紫铜罩聚能装药侵彻多层介质进行了研究,分析了钛合金聚能侵彻体相对于紫铜和低碳钢侵彻体在成型过程中,其动能、头部速度及射流长度等的差异,并对侵彻过程中应力波的传播特性进行了分析。结果表明:相对于紫铜和低碳钢,钛合金罩聚能侵彻体的能量转换率高,所获得的动能大,头尾速度梯度小,外形更为短粗;虽对多层介质侵彻时侵彻深度有所减小,但漏斗坑尺寸明显增大,且平均破孔孔径提高了约20%。  相似文献   

3.
 前级聚能装药侵彻技术和两级隔爆技术在串联战斗部的设计研究中占有重要地位。从理论分析、实验研究的手段出发,分析了前级装药的结构设计及前级装药爆炸对后级的影响,设计了两种药型罩结构的聚能装药侵彻混凝土靶实验,以及以多孔铝为隔爆体的隔爆防护实验。实验结果表明,设计的前级装药在混凝土靶上侵彻出了深度为8.2倍、孔径为0.4~0.6倍装药口径的孔洞;所采用的多孔铝隔爆结构有效地防护了二级弹体的破坏。实验效果比较理想。  相似文献   

4.
运用LS-DYNA动力学分析软件,对具有不同橡胶夹层厚度的陶瓷/橡胶/钢复合靶在30°和60°倾角下的射流侵彻情况进行了数值模拟。采用聚能装药基准弹,进行了剩余穿深实验,研究了射流侵彻陶瓷/橡胶/钢复合靶后射流速度、靶板变形和剩余穿深,分析了倾角和橡胶夹层厚度对复合靶抗射流侵彻性能的影响机理。结果表明:射流侵彻陶瓷/橡胶/钢复合靶的性能受倾角的影响很大,尤其是在大倾角下影响更为显著;橡胶夹层对射流侵彻性能有一定的影响,但其厚度的变化对射流侵彻性能的影响很小。  相似文献   

5.
聚能装药侵彻混凝土靶板的研究主要集中在聚能装药的材料、结构、侵彻深度和侵彻孔径大小方面,少有涉及整个混凝土靶板的破坏行为,但混凝土靶的整体破坏行为对整个聚能装药的侵彻毁伤效能评估有至关重要的作用。为更好地判定聚能装药对混凝土靶体的破坏程度,开展了大口径聚能装药侵彻大尺寸混凝土靶的实验研究。对实验后的混凝土靶板进行剖切,从混凝土靶的内部剖切面观测不同位置处混凝土靶的损伤程度,并对各个位置处的孔洞直径进行测量,获取孔洞的完整尺寸。在过孔洞中心的同一截面上切割边长为10cm的标准混凝土试件,并对其进行抗压强度测试,根据测试结果评估混凝土靶板的整体破坏行为,进而得到混凝土靶在聚能装药载荷下的破坏行为。测试结果表明,混凝土靶板的背板拉伸破坏半径约为110cm;以孔洞中心为轴,半径小于100cm内的混凝土损伤较严重,边界块体强度约为原始强度的40%;半径在100-140cm范围内混凝土的损伤不大,混凝土试件的强度约为原始强度的72%;当半径大于140cm后,聚能装药对混凝土的影响较弱,混凝土几乎未出现损伤。  相似文献   

6.
聚能装药侵彻混凝土靶板的研究主要集中在聚能装药的材料、结构、侵彻深度和侵彻孔径大小方面,少有涉及整个混凝土靶板的破坏行为,但混凝土靶的整体破坏行为对整个聚能装药的侵彻毁伤效能评估有至关重要的作用。为更好地判定聚能装药对混凝土靶体的破坏程度,开展了大口径聚能装药侵彻大尺寸混凝土靶的实验研究。对实验后的混凝土靶板进行剖切,从混凝土靶的内部剖切面观测不同位置处混凝土靶的损伤程度,并对各个位置处的孔洞直径进行测量,获取孔洞的完整尺寸。在过孔洞中心的同一截面上切割边长为10cm的标准混凝土试件,并对其进行抗压强度测试,根据测试结果评估混凝土靶板的整体破坏行为,进而得到混凝土靶在聚能装药载荷下的破坏行为。测试结果表明,混凝土靶板的背板拉伸破坏半径约为110cm;以孔洞中心为轴,半径小于100cm内的混凝土损伤较严重,边界块体强度约为原始强度的40%;半径在100~140cm范围内混凝土的损伤不大,混凝土试件的强度约为原始强度的72%;当半径大于140cm后,聚能装药对混凝土的影响较弱,混凝土几乎未出现损伤。  相似文献   

7.
针对串联战斗部前级装药大开孔兼顾侵深的要求,应用LS-DYNA有限元软件,结合正交优化设计方法,仿真研究了K装药的药型罩及隔板结构参数对高速聚能杆式射流成型的影响规律,找出了形成较高头部速度的聚能杆式射流的药型罩外壁曲率半径和偏心距(分别为90~110mm和35~40mm)。计算得到了各结构参数(偏心距、罩外壁曲率半径、壁厚、隔板直径、张角、锥角)对聚能杆式侵彻体成型指标(头部速度和头尾速度差)影响的主次顺序,获得了K装药结构参数的最佳组合。进行了X光成像及侵彻钢靶实验,侵深达到装药口径的3.73倍,侵彻孔径为装药口径的0.36倍,侵彻孔径较均匀。数值模拟结果与实验结果吻合较好,研究结果为串联聚能装药技术的进一步研究提供了参考依据。  相似文献   

8.
包覆式爆炸成型复合侵彻体成型规律研究   总被引:1,自引:0,他引:1  
 包覆式爆炸成型复合侵彻体是通过炸药爆炸驱动金属药型罩包覆内核活性材料而形成的一种新型高效毁伤元。为了设计带包覆物的小长径比聚能装药结构,采用AUTODYN非线性动力学分析软件,分析了主要结构参数对包覆效果的影响规律,得到了能够实现复合侵彻体爆炸包覆的较优结构。通过脉冲X光拍摄了具有较优结构的复合侵彻体成型过程,试验结果与仿真结果符合较好,验证了仿真计算的可信性。  相似文献   

9.
为提高射流侵彻性能,根据聚能射流装置的射流形成特点,设计了爆炸复合铝铜金属体作为药型罩的聚能射流装置。此装置依据已有的锥角为42°的聚能装药紫铜药型罩改进而来。利用LS-DYNA软件中的MMALE多物质算法,对此装置的射流形成、侵彻金属靶体全过程进行数值模拟。在保持装药量不变的情况下,计算了当铝铜药型罩锥角分别为36°、38°、40°和42°时的射流形成及侵彻过程。结果表明:射流头部速度随着铝铜药型罩锥角的减小而增大;且锥角为38°时射流穿深最大。相比单纯金属铜药型罩情况,射流头部速度提高了13.2%,侵彻深度提高了14.5%。  相似文献   

10.
为了对比分析Cu-Ni-Al反应聚能射流和惰性Cu聚能射流对45钢靶的宏观侵彻特性和靶板的微观组织特征,分别进行了Cu-Ni-Al和Cu药型罩的侵彻实验,并利用光学显微镜、扫描电镜、能量色散光谱仪和Vickers显微硬度测量系统对回收钢靶进行表征。实验结果表明:Cu-Ni-Al反应射流对45钢的穿深与Cu射流相比明显降低,但其平均入口孔径提高了33.3%。两种聚能射流侵彻作用下钢靶中均存在残余射流区、白色区(马氏体和奥氏体的混合物)和变形区。与Cu射流相比,Cu-Ni-Al反应射流孔壁残余射流区的硬度值提高了34 MPa,孔壁尾部白色区的硬度值增加了95 MPa,其孔壁头部白色区的硬度值降低了28 MPa。两种聚能射流孔壁尾部白色区的硬度值均高于头部。研究结果可为评估反应材料药型罩聚能装药战斗部的毁伤效应提供一定的参考。  相似文献   

11.
为研究夹芯结构的低速冲击响应,以碳纤维(T700)/环氧树脂复合材料层合板为上下面板,以闭孔泡沫铝为芯层,模拟夹芯板落锤冲击时的损伤演化过程。复合材料层合板采用三维实体单元建模,基于有限元软件ABAQUS中的用户子程序VUMAT,引入三维Hashin失效准则模拟复合材料的损伤破坏;采用二次应力准则,Cohesive单元模拟黏结层的层间失效;闭孔泡沫铝芯层采用3D Voronoi细观模型建模。分析复合材料夹芯结构在落锤冲击下的损伤起始、损伤扩展和最终破坏模式,通过锤头的接触力、位移、夹芯板的内能、后面板的最大位移研究夹层结构的能量吸收情况及抗冲击特性,得出了在质量保持不变的情况下,5种芯层相对密度和厚度的耦合关系中的最优设计是芯层相对密度15.0%,厚度为10 mm,为满足实际工程中的需求提供了设计依据。  相似文献   

12.
随着高强度、高抗冲击特性钢结构在防护装甲、武器库防护门等军事领域得到广泛应用,钢结构的抗冲击性能成为研究的重点和热点。采用光滑粒子流体动力学方法(Smoothed Particle Hydrodynamics,SPH)对半球头弹撞击多层钢板的过程进行了数值模拟,并与实验对比,分析了半球头弹撞击后钢板的失效形式,得到了撞击点处钢板盘式隆起、蝶形破坏等过程,得到了钢板的von Mises应力分布以及半球头弹的剩余速度,验证了SPH方法在模拟钢板侵彻变形问题上的有效性。通过数值模拟,研究了钢体层数、钢体厚度对其抗侵彻特性的影响,研究表明:3mm时单层钢板比多层钢板的防护能力强,9mm时多层钢板比单层钢板的防护能力强,12mm时多层钢板和单层钢板的防护能力相当。  相似文献   

13.
为了研究Q235钢多层板的抗侵彻性能,进行了直径为9.45 mm的钨合金球形破片侵彻7.2 mm和(3.6+3.6)mm厚Q235钢双层板试验,获得了相应的弹道极限。在此基础上,建立数值仿真模型,研究了钨合金球侵彻接触式等厚3层、4层、5层、6层板的弹道极限。通过量纲分析方法,分析了分层数对靶板弹道极限的影响。结果表明:对于球形破片,总厚度为7.2 mm的等厚双层板的抗侵彻性能高于单层板;当分层数大于2时,接触式多层等厚靶板的弹道极限随着层数的增加而减小,即分层数越多,靶板的抗侵彻性能越低,通过量纲分析方法得到了靶板分层数与破片弹道极限的关系。研究结果可为未来装甲防护设计提供一定的参考。  相似文献   

14.
基于平板装药与聚能射流的作用原理和应对大口径带隔板侵彻能力更强的聚能装药的需求,通过理论分析和数值模拟的方法,对比研究了单层平板装药、双层平行平板装药和多层平行平板装药对聚能射流的干扰能力,发现随着平板装药层数的增加,多层平行平板装药对聚能射流的干扰能力增强。平板装药之间的距离不仅决定了多层平行平板装药对聚能射流的干扰效果,而且决定了反应装甲的尺寸。采用ANSYS/LS-DYNA3D软件再现平板装药与聚能射流的相互作用的过程,综合对比某一时刻聚能射流的剩余速度、剩余动能、后效,优选出最佳的平板装药之间的距离δ=25mm时,不仅保证了多层平行平板装药对聚能射流的干扰效果而且能有效控制反应装甲的尺寸和重量,可为后期新型反应装甲的研制提供参考。  相似文献   

15.
随着高强度、高抗冲击特性钢结构在防护装甲、武器库防护门等军事领域得到广泛应用,钢结构的抗冲击性能成为研究的重点和热点。采用光滑粒子流体动力学方法(Smoothed Particle Hydrodynamics,SPH)对半球头弹撞击多层钢板的过程进行了数值模拟,并与实验对比,分析了半球头弹撞击后钢板的失效形式,得到了撞击点处钢板盘式隆起、蝶形破坏等过程,得到了钢板的von Mises应力分布以及半球头弹的剩余速度,验证了SPH方法在模拟钢板侵彻变形问题上的有效性。通过数值模拟,研究了钢体层数、钢体厚度对其抗侵彻特性的影响,研究表明:3mm时单层钢板比多层钢板的防护能力强,9mm时多层钢板比单层钢板的防护能力强,12mm时多层钢板和单层钢板的防护能力相当。  相似文献   

16.
针对增强聚能射流的破甲后效问题,设计了等壁平顶锥形铜铝双层复合药型罩装药结构,采用冲击波物理显示欧拉动力学软件SPEED开展复合射流成型及对钢-铝间隔靶侵彻过程的数值模拟,分析内外双层药型罩高度比ε、药型罩锥角α等参数对复合射流成型和间隔靶侵彻性能的影响规律。研究结果表明:复合射流的头部速度随ε增大呈先减小后增加的趋势,在ε约为1/2时,可形成具有相近速度的铜铝同轴复合射流微元,利于铝射流微元与目标相互作用实现后效增强毁伤;且当α在50°~60°范围内时,复合射流中段为集中的铝射流微元,更利于侵彻后的爆炸或爆燃反应。对优化参数的复合药型罩结构数值模拟结果与文献公布的实验结果吻合较好。研究结果对增强后效聚能装药设计具有参考价值。  相似文献   

17.
在现有双层平板装药结构爆炸反应装甲(ERA)的基础上,设计了4种双层楔形装药ERA,利用模拟仿真软件LS-DYNA 3D对其干扰射流的能力进行评估,分别对侵彻过程中平板运动状态、射流头部的速度变化及偏转程度、杵体断裂情况、侵彻靶板的深度及分布等进行分析,以选出最优方案。对比发现:方案3聚能射流速度下降最快,侵彻深度最浅且分布均匀,拥有最好的防护性能;方案4次之;方案1较方案4差些;方案2最差。且方案3和方案4中出现类似于爆炸焊接原理形成的复合飞板层。合理使用楔形装药可以使射流切割更加均匀,增强坦克的防护性能,为以后在装药结构上的探索提供了理论依据。  相似文献   

18.
 利用LS-DYNA3D软件,对有攻角条件下伸出式侵彻体侵彻单层靶板及等厚度双层间隔靶板进行了数值模拟研究,从靶后动能和靶板破坏程度的角度对比了伸出体与同质量、同外径的基准杆侵彻单/双层靶板的能力。得出了侵彻体动能随时间变化的规律,分析了侵彻过程中攻角、速度及靶板分层3个重要因素对侵彻体侵彻能力的影响。结果表明:当攻角小或速度大时,伸出式侵彻体相对基准杆有较明显的优势;当双层靶板的间隔与基准杆长度相等时,靶板的分层对伸出体的侵彻性能几乎无影响,而对基准杆有较大影响,说明伸出体侵彻多层间隔防护结构的能力明显优于基准杆。  相似文献   

19.
 研究了锥头弹丸撞击下FRP层合板的侵彻和穿透性能,在局部化破坏模式假定的基础上改进了Wen提出的能量简化分析模型。改进模型仍假设弹体在侵彻过程中表面所受靶体的平均压力由靶体材料弹塑性变形所引起的静态阻力和速度效应引起的动阻力两部分组成,认为侵彻过程中靶体对弹体的阻力不再是一个常数,而是侵彻速度的函数。并由此推导出了锥头弹丸在侵彻和贯穿过程中的侵彻深度、残余速度和弹道极限速度的公式。理论预测与实验结果符合得很好。  相似文献   

20.
带锥形药型罩的聚能装药爆炸时,由于爆炸产物沿装药斜切面飞散时发生轴向集中效应,使受冲击波和爆炸产物作用的药型罩变形,并因向轴向汇聚而发生碰撞,形成高速金属射流和杵体。对确定靶材而言,射流侵彻时的速度分布和质量分布是决定破甲效  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号