首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α (t), N β (t), t>0, we have that \(N_{\alpha}(N_{\beta}(t)) \stackrel{\mathrm{d}}{=} \sum_{j=1}^{N_{\beta}(t)} X_{j}\), where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form \(N_{\alpha}(\tau_{k}^{\nu})\), ν∈(0,1], where \(\tau_{k}^{\nu}\) is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ(N(t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.  相似文献   

2.
In a previous paper, we proved that, in the appropriate asymptotic regime, the limit of the collection of possible eigenvalues of output states of a random quantum channel is a deterministic, compact set Kk,t. We also showed that the set Kk,t is obtained, up to an intersection, as the unit ball of the dual of a free compression norm. In this paper, we identify the maximum of \({\ell^p}\) norms on the set Kk,t and prove that the maximum is attained on a vector of shape (a, b, . . . , b) where ab. In particular, we compute the precise limit value of the minimum output entropy of a single random quantum channel. As a corollary, we show that for any \({\varepsilon > 0}\), it is possible to obtain a violation for the additivity of the minimum output entropy for an output dimension as low as 183, and that for appropriate choice of parameters, the violation can be as large as \({\log 2 -\varepsilon}\). Conversely, our result implies that, with probability one in the limit, one does not obtain a violation of additivity using conjugate random quantum channels and the Bell state, in dimension 182 and less.  相似文献   

3.
We derive an exact infinite set of coupled ordinary differential equations describing the evolution of the modes of the classical electromagnetic field inside an ideal cavity containing a thin slab with the time-dependent conductivity σ(t) and dielectric permittivity ε(t) for the dispersion-less media. We analyze this problem in connection with the attempts to simulate the so-called dynamical Casimir effect in three-dimensional electromagnetic cavities containing a thin semiconductor slab periodically illuminated by strong laser pulses. Therefore, we assume that functions σ(t) and δε(t) = ε(t) ? ε(0) are different from zero during short time intervals (pulses) only. Our main goal here is to find the conditions under which the initial nonzero classical field could be amplified after a single pulse (or a series of pulses). We obtain approximate solutions to the dynamical equations in the cases of “small” and “big” maximal values of the functions σ(t) and δε(t). We show that the single-mode approximation used in the previous studies can be justified in the case of “small” perturbations, but the initially excited field mode cannot be amplified in this case if the laser pulses generate free carriers inside the slab. The amplification could be possible, in principle, for extremely high maximum values of conductivity and the concentration of free carries (the model of an “almost ideal conductor”) created inside the slab under the crucial condition providing the negativity of the function δε(t). This result follows from a simple approximate analytical solution confirmed by exact numerical calculations. However, the evaluation shows that the necessary energy of laser pulses must be, probably, unrealistically high.  相似文献   

4.
5.
We study the power spectrum which is estimated from a nonstationary signal. In particular we examine the case when the signal is observed in a measurement time window [t w , t w + t m ], namely the observation started after a waiting time t w , and t m is the measurement duration. We introduce a generalized aging Wiener–Khinchin theorem which relates between the spectrum and the time- and ensemble-averaged correlation functions for arbitrary t m and t w . Furthermore we provide a general relation between the non-analytical behavior of the scale-invariant correlation function and the aging 1∕f β noise. We illustrate our general results with two-state renewal models with sojourn times’ distributions having a broad tail.  相似文献   

6.
We derive the evolution law of an initial two-mode squeezed vacuum state \( \text {sech}^{2}\lambda e^{a^{\dag }b^{\dagger }\tanh \lambda }\left \vert 00\right \rangle \left \langle 00\right \vert e^{ab\tanh \lambda }\) (a pure state) passing through an a-mode diffusion channel described by the master equation
$$\frac{d\rho \left( t\right) }{dt}=-\kappa \left[ a^{\dagger}a\rho \left( t\right) -a^{\dagger}\rho \left( t\right) a-a\rho \left( t\right) a^{\dagger}+\rho \left( t\right) aa^{\dagger}\right] , $$
since the two-mode squeezed state is simultaneously an entangled state, the final state which emerges from this channel is a two-mode mixed state. Performing partial trace over the b-mode of ρ(t) yields a new chaotic field, \(\rho _{a}\left (t\right ) =\frac {\text {sech}^{2}\lambda }{1+\kappa t \text {sech}^{2}\lambda }:\exp \left [ \frac {- \text {sech}^{2}\lambda }{1+\kappa t\text {sech}^{2}\lambda }a^{\dagger }a \right ] :,\) which exhibits higher temperature and more photon numbers, showing the diffusion effect. Besides, measuring a-mode of ρ(t) to find n photons will result in the collapse of the two-mode system to a new Laguerre polynomial-weighted chaotic state in b-mode, which also exhibits entanglement.
  相似文献   

7.
We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time t 0 of emergence of impurity from the barrier and time t * corresponding to the beginning of degradation. For t 0 < t *, degradation processes are immaterial. In the opposite situation, when t 0 > t *, the results on time intervals t < t * can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with t * < t < t 0 depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval t * < t < t 0 is very narrow, and the transport regime occurring over time intervals t < t * passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval t * < t < t 0 occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals t < t 0 has two steps, while for t > t 0, it has only one step. The more remote step for t < t 0 and the single step for t > t 0 coincide with the asymptotic form in the problem without a barrier.  相似文献   

8.
We study the precision of parameter estimation for dephasing model under squeezed environment. We analytically calculate the dephasing factor γ(t) and obtain the analytic quantum Fisher information (QFI) for the amplitude parameter α and the phase parameter ?. It is shown that the QFI for the amplitude parameter α is invariant in the whole process, while the QFI for the phase parameter ? strongly depends on the reservoir squeezing. It is shown that the QFI can be enhanced for appropriate squeeze parameters r and θ. Finally, we also investigate the effects of temperature on the QFI.  相似文献   

9.
We consider two-dimensional Schrödinger operators H(B, V) given by Eq. (1.1) below. We prove that, under certain regularity and decay assumptions on B and V, the character of the expansion for the resolvent (H(B, V) ? λ)?1 as λ → 0 is determined by the flux of the magnetic field B through \({\mathbb{R}^2}\) . Subsequently, we derive the leading term of the asymptotic expansion of the unitary group e ?i t H(B, V) as t → ∞ and show how the magnetic field improves its decay in t with respect to the decay of the unitary group e ?i t H(0, V).  相似文献   

10.
Let T be an underlying space with a non-atomic measure σ on it. In [Comm. Math. Phys. 292, 99–129 (2009)] the Meixner class of non-commutative generalized stochastic processes with freely independent values, \({\omega=(\omega(t))_{t\in T}}\) , was characterized through the continuity of the corresponding orthogonal polynomials. In this paper, we derive a generating function for these orthogonal polynomials. The first question we have to answer is: What should serve as a generating function for a system of polynomials of infinitely many non-commuting variables? We construct a class of operator-valued functions \({Z=(Z(t))_{t\in T}}\) such that Z(t) commutes with ω(s) for any \({s,t\in T}\). Then a generating function can be understood as \({G(Z,\omega)=\sum_{n=0}^\infty \int_{T^n}P^{(n)}(\omega(t_1),\dots,\omega(t_n))Z(t_1)\dots Z(t_n)}\) \({\sigma(dt_1)\,\dots\,\sigma(dt_n)}\) , where \({P^{(n)}(\omega(t_1),\dots,\omega(t_n))}\) is (the kernel of the) n th orthogonal polynomial. We derive an explicit form of G(Z, ω), which has a resolvent form and resembles the generating function in the classical case, albeit it involves integrals of non-commuting operators. We finally discuss a related problem of the action of the annihilation operators \({\partial_t,t \in T}\) . In contrast to the classical case, we prove that the operators ? t related to the free Gaussian and Poisson processes have a property of globality. This result is genuinely infinite-dimensional, since in one dimension one loses the notion of globality.  相似文献   

11.
The concentration dependence of the transition temperature to the superconducting phase is calculated within the tt' – t" – J* model, which takes into account tree-site interactions. It is shown that the processes of scattering by spin fluctuations qualitatively change the character of the concentration dependences T c (n). These scattering processes in the normal phase significantly modify the distribution function of Hubbard fermions, determining the pronounced non-Fermi-liquid behavior of the system.  相似文献   

12.
The parabolic Anderson model is defined as the partial differential equation ? u(x, t)/? t = κ Δ u(x, t) + ξ(x, t)u(x, t), x ∈ ? d , t ≥ 0, where κ ∈ [0, ∞) is the diffusion constant, Δ is the discrete Laplacian, and ξ is a dynamic random environment that drives the equation. The initial condition u(x, 0) = u 0(x), x ∈ ? d , is typically taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2d κ, split into two at rate ξ ∨ 0, and die at rate (?ξ) ∨ 0. In earlier work we looked at the Lyapunov exponents
$$ \lambda _{p}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t} \log \mathbb {E} ([u(0,t)]^{p})^{1/p}, \quad p \in \mathbb{N} , \qquad \lambda _{0}(\kappa ) = \lim\limits _{t\to \infty } \frac {1}{t}\log u(0,t). $$
For the former we derived quantitative results on the κ-dependence for four choices of ξ : space-time white noise, independent simple random walks, the exclusion process and the voter model. For the latter we obtained qualitative results under certain space-time mixing conditions on ξ. In the present paper we investigate what happens when κΔ is replaced by Δ??, where ?? = {??(x, y) : x, y ∈ ? d , xy} is a collection of random conductances between neighbouring sites replacing the constant conductances κ in the homogeneous model. We show that the associated annealed Lyapunov exponents λ p (??), p?, are given by the formula
$$ \lambda _{p}(\mathcal{K} ) = \text{sup} \{\lambda _{p}(\kappa ) : \, \kappa \in \text{Supp} (\mathcal{K} )\}, $$
where, for a fixed realisation of ??, Supp(??) is the set of values taken by the ??-field. We also show that for the associated quenched Lyapunov exponent λ 0(??) this formula only provides a lower bound, and we conjecture that an upper bound holds when Supp(??) is replaced by its convex hull. Our proof is valid for three classes of reversible ξ, and for all ?? satisfying a certain clustering property, namely, there are arbitrarily large balls where ?? is almost constant and close to any value in Supp(??). What our result says is that the annealed Lyapunov exponents are controlled by those pockets of ?? where the conductances are close to the value that maximises the growth in the homogeneous setting. In contrast our conjecture says that the quenched Lyapunov exponent is controlled by a mixture of pockets of ?? where the conductances are nearly constant. Our proof is based on variational representations and confinement arguments.
  相似文献   

13.
The correlation between the asymptotic normalization constant for the deuteron, AS, and the neutron-proton scattering length for the triplet case, at, is investigated. It is found that 99.7% of the asymptotic constant AS is determined by the scattering length at. It is shown that the linear correlation between the quantities A S ?2 and 1/at provides a good test of correctness of various models of nucleon-nucleon interaction. It is revealed that, for the normalization constant AS and for the root-mean-square deuteron radius rd, the results obtained with the experimental value recommended at present for the triplet scattering length at are exaggerated with respect to their experimental counterparts. By using the latest experimental data obtained for phase shifts by the group headed by Arndt, it proved to be possible to derive, for the low-energy parameters of scattering (at, rt, Pt) and for the properties of the deuteron (AS, rd) results that comply well with experimental data.  相似文献   

14.
15.
We report on measurements of the electrical conductivity on a two-dimensional packing of metallic disks when a stable current of ~1 mA flows through the system. At low applied currents, the conductance σ is found to increase by a pattern σ(t) = σ ? Δσ E α [ ? (t/τ) α ], where E α denotes the Mittag-Leffler function of order α ∈ (0,1). By changing the inclination angle θ of the granular bed from horizontal, we have studied the impact of the effective gravitational acceleration g eff = gsinθ on the relaxation features of the conductance σ(t). The characteristic timescale τ is found to grow when effective gravity g eff decreases. By changing both the distance between the electrodes and the number of grains in the packing, we have shown that the long term resistance decay observed in the experiment is related to local micro-contacts rearrangements at each disk. By focusing on the electro-mechanical processes that allow both creation and breakdown of micro-contacts between two disks, we present an approach to granular conduction based on subordination of stochastic processes. In order to imitate, in a very simplified way, the conduction dynamics of granular material at low currents, we impose that the micro-contacts at the interface switch stochastically between two possible states, “on” and “off”, characterizing the conductivity of the micro-contact. We assume that the time intervals between the consecutive changes of state are governed by a certain waiting-time distribution. It is demonstrated how the microscopic random dynamics regarding the micro-contacts leads to the macroscopic observation of slow conductance growth, described by an exact fractional kinetic equations.  相似文献   

16.
We investigate a system of coupled oscillators on the circle, which arises from a simple model for behavior of large numbers of autonomous vehicles where the acceleration of each vehicle depends on the relative positions and velocities between itself and a set of local neighbors. After describing necessary and sufficient conditions for asymptotic stability, we derive expressions for the phase velocity of propagation of disturbances in velocity through this system. We show that the high frequencies exhibit damping, which implies existence of well-defined signal velocitiesc+ > 0 and c? < 0 such that low frequency disturbances travel through the flock as f+(x ? c+t) in the direction of increasing agent numbers and f?(x ? c?t) in the other.  相似文献   

17.
We analyze the detailed time dependence of the wave function ψ(x,t) for one dimensional Hamiltonians \(H=-\partial_{x}^{2}+V(x)\) where V (for example modeling barriers or wells) and ψ(x,0) are compactly supported.We show that the dispersive part of ψ(x,t) is the Borel sum of its asymptotic series in powers of t ?1/2, t→∞. The remainder, the difference between ψ and the Borel sum, i.e., the exponential part of the transseries of ψ, is a convergent expansion of the form \(\sum_{k=0}^{\infty}g_{k}\Gamma_{k}(x)e^{-\gamma_{k} t}\), where Γ k are the Gamow vectors of H, and k are the associated resonances; generically, all g k are nonzero. For large k, γ k ~const?klog?k+k 2 π 2 i/4. The effect of the Gamow vectors is visible when time is not very large, and the decomposition defines rigorously resonances and Gamow vectors in a nonperturbative regime, in a physically relevant way.The decomposition allows for calculating ψ for moderate and large t, to any prescribed exponential accuracy, using optimal truncation of power series plus finitely many Gamow vectors contributions.The analytic structure of ψ is perhaps surprising: in general (even in simple examples such as square wells), ψ(x,t) turns out to be C in t but nowhere analytic on ?+. In fact, ψ is t-analytic in a sector in the lower half plane and has the whole of ?+ a natural boundary. In the dual space, we analyze the resurgent structure of ψ.  相似文献   

18.
Using the thermo entangled state approach, we successfully solve the master equation of a damped harmonic oscillator affected by a linear resonance force in a squeezed heat reservoir, and obtain the analytical evolution formula for the density operator in the infinitive Kraus operator-sum representation. Interestingly, the Kraus operators Ml,m,n,r and \(\mathfrak {M}_{l,m,n,r}^{\dag }\) are not Hermite conjugate, but they are still trace-preserving quantum operations because of the normalization condition. We also investigate the evolution for an initial coherent state for damping in a squeezed heat reservoir, which shows that the initial coherent state decays to a complex mixed state as a result of damping and thermal noise.  相似文献   

19.
We propose a new optical field named Laguerre-polynomial-weighted two-mode squeezed state. We find that such a state can be generated by passing the l-photon excited two-mode squeezed vacuum state Cla?lS2|00〉 through an single-mode amplitude damping channel. Physically, this paper actually is concerned what happens when both excitation and damping of photons co-exist for a two-mode squeezed state, e.g., dessipation of photon-added two-mode squeezed vacuum state. We employ the summation method within ordered product of operators and a new generating function formula about two-variable Hermite polynomials to proceed our discussion.  相似文献   

20.
The population noise in a semiconductor laser is calculated by means of the quantum mechanical Langevin method. The resulting population noise is given by 〈δ N c 2 〉=(T c/2) (rate in+rate out)+K(¯n), whereN c is the total number of electrons in the conduction band in the active region,T c is a relaxation time. The first expression is the usual shot noise term. The transition rates are the sum of the rates due to the light field, the pumping and the spontaneous emission. The last termK(¯ n) is caused by the light field fluctuations;¯n is the mean number of photons in the laser mode.K(¯ n) consists of two parts: a) The main part is proportional to the intensity noise of the light field, which increases below but near threshold and gets constant above threshold. b) There is a second term due to the fact that parts of the fluctuations of the population and of the light field are correlated. — The noise spectrumS I(ω) of the junction currentI is calculated for low frequencies. Beyond the usual shot noise termS I(0)=2eI, additional noise is found in and above the threshold region, a) mainly because of the fluctuations of the light field in the laser mode and b) to a small amount, because the absorption processes due to the laser photons weaken the forward current, which is carried by emission processes, while the absorption noise adds to the emission noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号